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A AbStraCEj—'” recenlt yfears, the ava||ab||l|ty of ﬁomg’Uter'basﬁddethOds It is well known that the differentiation problem of signals is an
as created a revival of interests in exploring algebraic methods in non- : :
linear context. This note proposes a new approach to algebraic nonlinear 0'0_' gnd challenglng pr(_)blem. Numerqus techmques are known tp be
observer design. After giving the notion of algebraic observability, and efficient for the estimation of the few first o_Ierlvatlves fr'om data with
based on a novel algorithm of exact differentiation, the formulation of low frequency content, such as polynomial- and spline-based least
the nonlinear observer is realized via the construction of a set of linear squares, and averaged central differences [22]. The main advantages
time-varying differentiators. An example of a chemical reaction is given to of such observers are intuitiveness, flexibility and speed. However, as
show the effectiveness of our approach. . . ’ . AR . ’
is the case of many inverse problems, differentiation is an ill-posed
_ Index Terms—Exact differentiation, nonlinear observers, system theory, operator. In this case, the use of regularization to partially overcome
time-varying systems. the noise sensitivity is recommended [22]. Other concepts of signal
differentiation have been formulated by the use of high-gain observers,
I. INTRODUCTION see [4], [23]-[25]. Finite-time differentiators have been proposed in

) ) ) ) ) [26]. Unfortunately, the majority of these techniques are not able
Nonlinear observer design has received considerable attention Sipeerish exact output derivatives, and others are in need of some
the appearance of the ploneer works Of_ Kalman [_1] and Luenberggformation such as the upper bounds of the higher-order derivatives
[2]. The available techniques for the design of nonlinear observer )
be classified in three groups. First, high-gain observers based on polen order to master the crucial point of the differentiation problem,
placement algorithms as in [3], algebraic Ricatti equation (ARE) as #mply with the existing practical situations, and ensure certain reli-
[4]-{8], Lyapunov equation as in [9]-{12], and backstepping method @gjity while estimating the slopes of outputs, issued from different
in [13]. Second, Kalman filter based observers, whose design is baggtrol inputs, we propose, for the first time, a novel exact differen-
on local linearization of the system around a reference trajectory, fgstor whose states converge asymptotically to the successive higher
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egposed. Furthern’_lore,_ the linearization approaches based upon cggk ones, then any state given in term of a static diffeomorphism,
dinate transformation, is generally based upon a set of extremely {gyolving these derivatives, will be reproduced exactly with the same
strictive conditions, that may hardly be met by any physical SystéM.convergence rate of the derivative estimates.
In Section Il, the theory of the LTV differentiator is exposed. Sec-
tion Il is devoted to the design methodology of the asymptotic alge-
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numbersy ) is theith time-derivative ofy with respect ta such that
¥ = y . Amin(A) is the smallest eigenvalue of the matrixand
Amax (A4) denotes the largest eigenvalue4f A’ is the transpose of
A - = stands for equality, by definitiorC’* stands for the binomial
coefficient. We call that a function:IR>, — IR, is a K-func-
tion if it is continuous, strictly increasing and0) = 0. A function
f:R>0 x R0 — IR is a X L-function if for each fixedt > 0, the
function 3(-, t) is a I{-function, and for each fixed > 0 it is de-
creasing to zero as— oo.

Il. LTV D IFFERENTIATOR

Before giving the main result of this note, we need to give the fol-

lowing lemma.
Lemmal: Let f(¢t):IR>o — IR be a uniformly bounded and a con-
tinuously differentiable function for all > 0, then

. . —¢2 ¢ 72
1) Lhm e / e” f(r)dr=0 (@)
o o
and
> [t ‘T2
ii) lim e ! / f(7) < / et d() dr = 0. ()
—_— 00 0 0
Proof: i) Sincef(¢) is uniformly bounded, we have
2 [t o 2 [t 2
Cie ! / e dr <e ! / e’ f(r)dr
J0 JO
2 t 2
<Che™t / e’ dr 3)
0
whereC'y = ming>o(f(¢)), andC> = max¢>o(f(¢t)). The integral

et [0’ ™’ dr is called the Dawson’s integral which vanishes to zero
whent — ~o. To prove (1), we develop the expansions of the Dawson’s

integral for large values af. Remark that for a fixed valule
2 b 2 2 b 2
e / e dr<e " e -b:()(ef );t—>oo.
0

Thus, it yields a small contribution for large valuestoT he first two

. . . 2 2 .
terms in the asymptotic expansion-of fbt e drarel/2t+1/47 +
O (1/#°):t — oc. If we continue the integration process, one ca

obtain the following:
i e [ = b (LS -0 (4
i = [T = i (543 g | =0 @

whereay = 1 anda; = (2¢ — 1)a;—y, Vi.ii) We have

Cre /Ol </OT eﬁzdg) dr <e /Ol f(r) </OT eCQdC) dr
< Che /t </T eczd§> dr.
S (5)

Sincee ™" [7 e¢”d¢ < k, whered < k < 1; see [27, pp. 297-319],

then
2 [t T 2
e
Jo Jo

dr = lim ke™"

t—oc

lim e™ "

t—o0

2 L
/(’ dr =0. (6)
Jo

Consequently, (2) is verified. Now, we are ready to introduce the basic

result of this note.
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A. Differentiator Design

Theorem 1: Let{(t): IR >0 — IR be a scalar continuous function of
classC* and let(p;, 7 = 0,1,2,...) be a sequence of positive real
numbers. If the higher derivatives §ft) satisfy

sup E(i’)(f)’ < pis i=0,1,2,... (7)
t>0
then the state vector of the following time-varying system:
(1) = A(t)x(t) + B(HE(t) (8)

converges to the vectde(t) £(¢)] when time elapses. We note

0o 1 }‘mﬂ:{é;},aemw~ ©)

—a?t? —2at
Proof: To prove this result, it is sufficient to show that
lim: oo 21 (t) = £(t). The state variable, () verifies the differential
equation

A(t) = [

F1(t) + 2atiy (1) + o717 (21 (t) — (1) = 0. (10)

Equation (10) is transformed to an ordinary differential equation with

constant coefficients by taking the Liouville-Green transformation
of 942 . .

y(H) %2, (£)e(2/2%) which gives

(1) = ay(t) = a*Fe! g (t), (11)
Using the method of variation of parameters, we obtain
w1 (t) :Clefu/z)t(aurz\/a) + 626(1/2)1(7Qt+2\/3)
_ %a‘s/zefu/z)t(awzﬁ)
% /t26(1/2)f(m+2\/§)€(t)dt
n
+ %0{3/20(1/2)1‘,(—01-&-2\/3)
x /t2e*(l/m(*“f“ﬁ)g(t)dt (12)
Iz
where ¢ and ¢ are real constants. Define
U(t)d:erffzeu/z)z(uz+2\/&)dt’ 'u*(t)d:e[ftze_(l/z)L(_“[+2‘/E)clt,
ﬁl(f)(léf _ 1/203/2¢7(1/2)t(ot+2\/3)’
(f)z(f)dzd1/2@3/26(1/2)t(7at+2‘/§), - d:ofl/ﬁ(\/at +1),
ngdéfl/\/i(\/&t— 1). By integrating I, and I> by part, then
I = v(t)E®) — [v(®)E@)dt, andIz = v*(1)E(t) — [ v (H)E(¢)dt.

We have

(o) - )
v(t) = = (13)
and
(6(1/2)L(M—2\/J) (at + \/E))
Vi) = ; : (14)
o2
Then, using (13) and (14), we have
Sr1v()E(E) 4+ p2u™ (1)E(E) = £(2). (15)

Consequently
w1 (t) = £(t) + Clef(l/Z)t<c\t+2\/H) + 626(1/2)1‘/(7&154»2\/3)

—61(t) /U(t)é(t)dt—d)g(t) /u*(t)é(t)dt. (16)

—_— —
I3 Iy
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Integrating I and Iy by part,  we obtain the time-derivative of(¢) without any knowledge of the upper bounds

Is = &(t) [o(t)dt — [&(t) ([ v(t)dt)dt,andl, = £(t) [v*(t)dt —  of the&-derivatives.

fﬁ(t) (o™ (t)dt) dt. We have[ v(t)dt = 1/&26(1/2)t(w+2‘/§) —

1/a?/? [ (/) (at2va) dt, and [ v (t)dt _ IIl. DEFINITION OF THE ASYMPTOTIC ALGEBRAIC OBSERVER

1/ e1=2V8) 1 g3/2 [ (/21(e1=2) g4 Remark that  In this note, we will not give explicitly the detailed algorithms for

the quantity system estimation, but we refer the reader to [28]-[32] to see what have
1 ) . i 1 . . i been done in this area. We define the algebraic observability condition

—— 61 (1) VPN ) o (1) /DU (1) as follows.

o @ Definition 1: Consider the nonlinear system described by the fol-

is equal to zero. Moreover lowing dynamic equations:
lim ggt)z ¢1 (t)/e(l/z)t(atJrZﬁ)dt () = f(e(t), u(®)) (23)
—oo o/ : y(t) = h(x(t))
=— lim ES—”c‘* /c”fdm =0 (17) wheref:IR" x R™ — IR" is continuously differentiable and satisfies
omeee 2a £(0,0) = 0. 2(¢) € R™ is the state vector(¢) € IR is the input
lim £(t) (1) e(l/z)t(atfz\/g) dt vector, andy(t) € IR is a smooth nonsingular output. We assume that
i—oo aB/27? ’ ‘ y(t) andu(t) are continuously differentiable for all>> 0. System (23)
] é(t) o 5 is said to be algebraically observable if there exist two positive integers
= lim =2Z=e™" [ e"™dny = 0. (18) 4 andv such that
n2—o0 /2
To end the proof, it remains to study the limit of the function x(t) = ¢ (y7 Uity ey, i, 7'u(”)) (t) (24)

é1(1) /f(t) (/v(t)dt) dt + oo (1) /f(t) (/v*(f)dt) dt (19) wheres(-): R#*+! x ROTY™ s IR" is a differentiable vector valued
- : - : nonlinearity of the inputs, the outputs, and their derivatives.

whent — oo. Term (19) can be written as Notice that the last definition has been introduced in reference [33]
1 ) ). to characterize theniform complete observabilitiRecall that for non-
- e M / e E(t)dm linear systems, there exists a set of control inputs which renders system
V2a . (23) unobservable. We refer the reader to [34] for introductory discus-
+ L o3 /J%é’(t‘)dm sions of this problem. For our case, we define this class of bad inputs
V2 as follows.
1 2 [ W Definition 2: System (23) is algebraically observable for any input,
Tt /i(t) </e 1d’“> dm if the vector valued
4 Lo /f(t) </ (3"3(1772> dns. (20) x(t) =0 (y,z),i/} ey, fm'l/-,fi,---,'u(”)) (t)
(a3

Since the higher derivatives 6ft) are bounded and using the resultds defined orR"*! xIR“+D" — IR" forallu € U. We calll’ the set
of lemma 1, we conclude that the term of (20) vanishes to zero whehcontinuously differentiable control inputs for which the state vector

t — oo and, thereforelim,_ . 1 (t) = £(t). (24) is define(_j everywhere, and we ndfé, the set of bad inputs that
makes (24) singular.
B. Sensitivity In order to use the differentiator (8), we are obliged to guarantee

N . . . . the boundedness of the output and its derivatives. For this reason, we
For practical implementation of differentiator (8) it is necessary t.. 04 /,ce the new output

saturate the time, that appears in the expressions4ift) and B(#).
The saturation of the termt in (8) shall be done when the differen- y(t) = arctan(t) o y(t). (25)
tiation error becomes negligible. Letbe an arbitrary small positive

number, then we propose to rewrite the dynamics of the dh‘ferentiat-gli]e outputy_(f,) may be either bounded or unbour_1ded function of
®) as time. We will prove that whatever the nature ¢f(i.e., bounded

or unbounded), the new outpg{#) enjoys the property of being
Con 0 1 , 0 R uniformly bounded along with its higher derivatives. For this reason,
a(t) = |:—<,92(t) —Z,:(t)} @(t) + L“’(t)} &0 (1) we distinguish two cases.
R i Case 1y(¢) Uniformly Bounded: Wheny(#) is uniformly bounded,
where:(t) is defined by theny(t) is a globally Lipschitz, see Appendix for the proof. Using
syt f @ for |z (t) — £(t)| > € the result of Khalil (see [35, Lemma 2.3, pp. 77-78]) which states
S(t)= 0 forl|e (t) —€&(t)]| < e that the first time-derivative of a globally Lipschitz function is uni-
. .. formly bounded function, then with the same analysis we conclude
such thatp(0) = 0. When|a, () — £(¢)| > ¢, the dynamics of dif-
ferentiator (21) is the same dynamics of (8). Fer(t) — &(t)| <

that the second time-derivative gft) is a globally Lipschitz if its
\ g . - . - first derivative does, and so on. Repeating the last argument for the

¢, the function> becomes time-invariant, i.es = ¢, wherey is  pigher time-derivatives of(t), we deduce that the higher time-deriva-
a positive constant. Consequently, the dynamics of the differentiaigjes of any uniformly bounded outpytt) are uniformly bounded. Re-
(21) [or the dynamics ofr2(#) in (21)] is reduced to an output of ca|l that our interest is to prove the uniform boundedneg&#t Since
a‘stable time-invariant linear differentiator whose transfer function igy derivative?’ j(t) /dt' = d'~" /dt'~! (9(t)/1+ yQ(t))‘ Vi is de-
#°s/(s+ @) (here,s denotes the Laplace variable). Since the staffhed everywhere and is expressed in terms of the derivativgstof
x2(t) always represents the first derivativesof(t), then computing which are uniformly bounded, this implies immediately th&? (t),
the differencgz, () — £(t)] is a necessary and a sufficient tool to de; = 1,2,... are also uniformly bounded.
cide about the precision of the differentiation error. Moreover, checkingCase 2y(¢) Unbounded: Sincey(#) is not singular and continu-
the value ofl (t) — £(t)| will serve as a practical guide to computeously differentiable (by Definition 1), then whatever the nature of the

(22)
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divergence of(¢) (i.e., a finite-time escape to infinity or slowly mono-wherez; is the concentration of the reactahis the reaction rate con-

tone divergence), we could write tHah; .. y(t) = £co. Todemon- stant,x is the catalyst activity, an#l; is the specific decay constant.

strate the boundedness ®fin this case, we introduce the following From (30), we have; = ¢1(y) = y,andez = ¢2(y,4) = —3/(ky*)

lemma. which implies that:; andx» are algebraically observable. As we have
Lemma 2: Let y(¢):IR>o +— IR be a continuous function of introduced previouslyy = arctan(y). Theny = v (y,y) = y(1 +

class C* such thatlim; ... y(t) = Zoc. Then the function y?), which gives

y(t) = arctan(t) o y(t) is uniformly bounded with its derivatives

g (t),i =1,2,.... Furthermordim; ... 3" (t) = 0 forall i > 1. n=vily) =y

For the proof of this lemma, see Appendix. o — & g (05 = (1 F y)y
p pp 2 =da(-) o (-) = U2 (ygy) = _T (31)
A. Change of Coordinate According to (28), the observer is readily constructed as
Because of the uniform-boundedness property(of, it is advan- G = — (Hu?)
tageous to rewrite the state vecterin terms of they-derivatives. . (ky?) 32)
Using the fact thafj(t) = 7.(y(1),5(1)) = (1+4°(H)4(t), and =&
& = —a?t? (& — arctan(y)) — 2atés

() = )0t 0t) = (1+5°(1) Cu®ut) + u(t), ,
then the higher derivatives af can be easily computed in terms ofwhere¢; andé; converge asymptotically tg andy, respectively. As
the outputy and the derivatives of. In other words, there exists awe have mentioned in Section II-B, practical realization of observer

diffeomorphisml’ = [y (-) -+ ~.(-)]" (¢) such that (32) needs the saturation of termsthat appear in the right-hand side
v . v of (32). For this purpose, observer (32) is replaced by
v = (w5 ) @0, 1<i<p (26) e
==y
Consequently, the state vectois written in the new coordinates as &1 =6
) = —? — arctan(y)) — 2p&- (33)
z(t) =¢(,) _O T() %_ : (i§1|£1 - arrtii%ijﬂ >t€2
=1 (y,gg g,...,g(u).’LL,’L.L./'I'I:,...,’U‘(V)) (t) (27) L {O if |E1 — arcta‘n(y” <e

where is any desired precision that seems to be satisfactory in practice.
In order to show the effectiveness of observer (33), in Fig. 1 we have
plotted the state in a solid line and its estimate in dashed line. The
imulation is done fok = 1, o« = 10, ande = 10~ *. Fort > 11s the
&Sired observation errfr, — 2| is reached~ ), andy is totally
saturated. Suppose now that some additive controllers are presentin the
Hgnamics of the last reaction (30), i.e.,

Remark 1: In order to smooth the higher derivatives i), it is
recommended to takgt) = arctan(8y(t)), where3 is small positive
parameter.

In the sequel, all the state variables are time-dependent, andz
notation simplicity, the time variableis omitted. The whole design
of the asymptotic algebraic observer for multiple-input—single-outp
(MISO) nonlinear systems is given in the following theorem.

Theorem 2: Consider (23). If (23) is algebraically observable, then T = —kivzﬁ + oy
for anyw € U such thaty is continuously differentiable, the dynamic dy = —kgx3zr + us (34)
system Y=
. . ) then by elimination of the unmeasured staiefrom the first equation
r=vw (y’&’&“'"5'-’“"”’”’“"""“ ) of (34), we havers = u; — §/ky* = ui — y(1 +y*)/ky*. Conse-
f=6 quently, the corresponding observer is
& = —a’t? (& — arctan(y)) — 2at&, &y = 71”_5,?,5?%)
& =&+ E1 =& (35)
Eiv1 = —a’t? (& — &) — 20tEi40; £ = —a’t? (& — arctan(y)) — 2atés.
1=3,5,7,...,2u—1 (28)

. . . IV. OTHER SCHEMES OFPRACTICAL OBSERVERS
is an asymptotic algebraic observer for system (23) where the param-

etera € R, is introduced to master the rate of convergence of the I this section, we show how can we combine the algebraic observer

derivative estimates. with classical Luenberger observer for nonlinear systems. Consider the
Proof: We see that (28) is a concatenation of the differentiatélonlinear system
given in Theorem 1. System (8) is augmented in order to havgtthe i=Ax+ fr,u) + gy, u)

derivative ofy. Using the results of Theorem 1, we obtain for< i <

1) limi—o ) = &;. Consequently y=Cx (36)

: with the stater evolving on an open connected subsétof R", the

[1111010 W (y, &2,8ay 0 Eopyu, 0, L, u(”)) inputu € IR™ and the outpug € IR; the vector valued: M xIR™ —

' . R ) TR" is supposed to be smooth for simplicity wift{0,0) = 0 and
- (?h TR NS T (N AP ) =0. (29) (4,C)isassumed to be an observable pair. The class of systems given

in (36) is fairly general, but it is chosen herein for its popularity. If the
state vector: verifies (27), then we rewrite the system dynamics (36)

B. Example Catalyst Batch Reactor as follows:
Consider the second order chemical kinetics, coupled with a second i=Ax+ f (7, 0)+ gy, u)
order decay rate of the catalyst activity [36] S o
. o y=Cu (37)
Tl = —RT227 _ b " ~ — . v
iy = —kd.’E%l‘l (30) wherez = (yv yﬁ""/g(} )>vy = arctan(y),u = (U'-/uv"'ﬁu( )>'

y = a1 x = Y(T, 1), andf'(a‘c, @) = f(-,-) o ¢(-,). The vector valued non-
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Fig. 1. Stater, and its estimatez.,.

linearity 7(-,-): IR*T' x R“*Y™ s R™ is supposed to be globally UsingP~' A+ A'P~! = C¢'C — P~'Q(~)P~", then we obtain
Lipschitz with respect ta with a Lipschitz constant, i.e., for all 4, v <—¢ (P*IQ(W)P*I + C’C) .

7y € R andallu € U
+2¢ P~ (f(2.0) - f (& 7))

|f@a) = o) < Mo =2l (38) < (PP Y
The combination of the algebraic observer and the Luenberger observer +2|le'P7Y| Hf (z,a) - f (€ a) (42)
is summarized in the following theorem. 1 . .
Theorem 3: Consider system (37). For sufficiently large and for -6t# = I ¢, thenV" = 2 Pz. Using (38), we have
anyu € U such thaty is continuously differentiable, the following V < —2'Q(7)z + 2)\||2]||I€ - z||
system: < —amin Q) 1211 + 27l 2I[1€ - 7
. . M , o 2 >\2 _ 5
& =Ad+ f (& 1)+ gly.u) + PC" (y = C) < —%IIzIIQ +25 0~ 7|I”
& =& 2 PR 2
& _ _ 0?2 (&1 — arctan(y)) — 2016 S noD) (p)v +277||5—}r|| : (43)
. & :Ei“z , Let 4 = 7%/2\max (P), this givesV < e #V(0) +
§ivr =—a't" (& — &im1) — 200841 202 /42 [ ||E(s) — #(s)|| ds, or
i=3,5.7,....2u—1 ¢
—ut = — 2
AP+ PA - PC'CP+Q(y)=0 (39) llell* < Culle(0)[*e™"" + Ca / €(s) — 2(s)||"ds (44)
J0
is an asymptotic converging observer of (37) whepgy) = Suchthatli = Amax (P.z) [Amin (P), andC2 :22/22147”2)‘"‘1" (P).
diag [C142, C244, ..., 0y ], andés = €20, (1 < 0 < p). Let us. take /3 (IIEgO)II ) = Cille(O)Fe™, #(t) =
Proof: Lete = z—, and letus také¥” = ¢’ P~'c asaLyapunov C: [, ||€(s) — Z(s)||"ds, then using the definition of input-to-state
function to the error dynamics stability (ISS) and result of Theorem 1, then we conclude that the error
dynamics is ISS stable with respect to the differefj¢et) — z(t)||;
¢ = (A _ PC"C) e +f(;?:. a) - f(é.ﬁ). (40) see [37] for more details on 1SS.Since all the estimates of the
i : output derivatives converge asymptotically to the exact ones, then the
Then observer error is asymptotically stable.

Remark 2: The sensitivity of observer (28) to noise is important, but

V=¢'P let e P le observer (39) behaves so much resistant to eventual additive noise.

=e' (A'P™'+P7'A-2C"C)e 1System (23) is (globally) ISS if there exis#d L-functionB: IR o X IR
R P and aK-function » such that for eachu and2(0) € IR", it holds that
+2/P (f(@a) - f (E.0)) (4D e (t,2(0), wll < B(lz(O)Il, ) + r (llull) , for eacht > o.
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V. CONCLUSION [71

In this note, a new observer design methodology is presented. Thgg)
whole design of the nonlinear observer is based upon differential alge-
braic concepts with time-varying linear system theory. We showed that
the desigh method is free from several cumbersome computations an
some strong geometric conditions, generally encountered in geometric
observer design methods. The generalization of the observation prgto]
cedure for multiple-input—multiple-output systems is possible and the
observer strategy is exactly the same as we have developed for Ml
systems. To do so, it is sufficient to recopy the dynamics of the MISQ ,
algebraic observer for different output signals. The simplicity and the
straightforwardness of our observer design methodology give a firdi.3]
step for algebraic approach to nonlinear observer design.

[14]
APPENDIX
[15]

The Lipschitz Property of Uniformly Bounded Functions [16]

When the outputy is continuously differentiable and uniformly
bounded, then using the definition of continuity, we could say that[17
for everye > 0, there exist$ > 0 such thaft; — ¢2| < § implies
ly(t1) — y(t2)| < e. For anyt; # t., we can findy > 0 such that
|t1 — t2] > n. Then,|t; — to| < § implies|y(t1) — y(t2)| < €/n -7
This gives|y(t1) — y(t2)| < €/nlt1 — t2|. Whenlt; — t2| > 6, we
can writely(t1) — y(t2)| < 2sup,5, [y(#)] = 2supysq |y(#)|/6 - 0
< 2sup,so|y(t)]/6]t1 — t2|. Finally, we conclude that for any
t # t2, |y(t1) — y(t2)| < max {2<§11[)t>O ly(t)|/6.¢/n} It — tal.
Consequentlyy(t) is globally Lipschitz.

(18]

(19]

(20]

Proof of Lemma 2 [21]
Here, the outpuy(¢) is assumed to be unbounded. We shall prove

that the new outpug(t) = dl(tdll(y(t)) is uniformly bounded func-

[22]
tion. We havey(¢) = 9(t)/1 +y (t) Sincey(t) € C, theny() is
defined everywhere artn, fo s)ds = — arctan(y(0)) /2.

Using Barbalat's lemma, we concludethaﬁtﬁoo y(t) = 0. With the [23]
same analysis and using the fact that the higher derivativgg bfire [24]
defined everywhere, we obtain
to [25]
; =) — -1 =1
zlinolo /U 7 (s)ds = tlinolo( (t) — (0))
=-3""0), i>2 @45)  [26]

[27]
Thenlim, ., 7 (¢t) = Ofori > 1, which implies that the derivatives
me >( t),i > 1 arefinite energy functions or uniformly bounded oifer [28]

[29]
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