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Online Exact Differentiation and Notion of Asymptotic
Algebraic Observers

Salim Ibrir

Abstract—In recent years, the availability of computer-based methods
has created a revival of interests in exploring algebraic methods in non-
linear context. This note proposes a new approach to algebraic nonlinear
observer design. After giving the notion of algebraic observability, and
based on a novel algorithm of exact differentiation, the formulation of
the nonlinear observer is realized via the construction of a set of linear
time-varying differentiators. An example of a chemical reaction is given to
show the effectiveness of our approach.

Index Terms—Exact differentiation, nonlinear observers, system theory,
time-varying systems.

I. INTRODUCTION

Nonlinear observer design has received considerable attention since
the appearance of the pioneer works of Kalman [1] and Luenberger
[2]. The available techniques for the design of nonlinear observer can
be classified in three groups. First, high-gain observers based on pole-
placement algorithms as in [3], algebraic Ricatti equation (ARE) as in
[4]–[8], Lyapunov equation as in [9]–[12], and backstepping method as
in [13]. Second, Kalman filter based observers, whose design is based
on local linearization of the system around a reference trajectory, re-
stricting the validity of the approach within a small region of the state
space [14]. Third, observers with input and output injection terms as in
[15]–[19]. Some of these observers necessitate estimation of the output
derivatives and no complete analysis of the observer design has been
exposed. Furthermore, the linearization approaches based upon coor-
dinate transformation, is generally based upon a set of extremely re-
strictive conditions, that may hardly be met by any physical system.
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Motivated by some results on algebraic observability, Diopet al.[20]
proposed a general observer design methodology based upon numer-
ical differentiation and the interpretation of observability of a system as
the solvability of the system’s dynamical equations for the state vector
in terms of a finite number of derivatives of the output and input. This
idea has been developed and performed by Ibrir and Diop in [21]. In [4],
[22], and [23], Ibrir has proposed a set of linear continuous-time dif-
ferentiators to build a new kind of state estimators, called algebraic ob-
servers. Due to the residual error provided by the differentiator system,
the estimated states could never converge to the exact ones, but they
approach the true ones by regulating an adjustable parameter.

In this note, we propose a new approach to observation of nonlinear
systems that met the algebraic observability conditions. The proposed
observer enjoys the advantages: 1) of being free of some restrictive
conditions as Lipschitz condition or Hölder continuity condition;
2) always exists whenever the algebraic observability condition is
verified; 3) insensible to error modeling while systems being observed
are given in classical Brunovski forms. The formulation of the nonlinear
observer is quite new and is based upon the construction of a set
of linear time-varying (LTV) differentiation systems. The novelty
of the proposed observer is that the observer states are given in
term of a static diffeomorphism that involves the states of the LTV
systems. Hence, the observation problem becomes less dependent
to the form of nonlinearities and more attached to the calculation
of the time-derivatives of the inputs and the outputs. Therefore, we
can say that the key element, in this kind of observer design, is the
accuracy of the selected differentiation method and its robustness.
It is well known that the differentiation problem of signals is an
old and challenging problem. Numerous techniques are known to be
efficient for the estimation of the few first derivatives from data with
low frequency content, such as polynomial- and spline-based least
squares, and averaged central differences [22]. The main advantages
of such observers are intuitiveness, flexibility and speed. However, as
is the case of many inverse problems, differentiation is an ill-posed
operator. In this case, the use of regularization to partially overcome
the noise sensitivity is recommended [22]. Other concepts of signal
differentiation have been formulated by the use of high-gain observers,
see [4], [23]–[25]. Finite-time differentiators have been proposed in
[26]. Unfortunately, the majority of these techniques are not able
to furnish exact output derivatives, and others are in need of some
information such as the upper bounds of the higher-order derivatives
[26].

In order to master the crucial point of the differentiation problem,
comply with the existing practical situations, and ensure certain reli-
ability while estimating the slopes of outputs, issued from different
control inputs, we propose, for the first time, a novel exact differen-
tiator whose states converge asymptotically to the successive higher
derivatives of a given input signal. This differentiator does not need
any information about the signal to be differentiated, like the nature
of the signal ora priori knowledge of the upper bounds of its higher
derivatives. Since all the derivatives converge asymptotically to the
true ones, then any state given in term of a static diffeomorphism,
involving these derivatives, will be reproduced exactly with the same
convergence rate of the derivative estimates.

In Section II, the theory of the LTV differentiator is exposed. Sec-
tion III is devoted to the design methodology of the asymptotic alge-
braic observer. The combination of the asymptotic algebraic observer
with the classical Luenberger observer will be the subject of Section IV.
Finally, the note ends with some concluding remarks. Throughout this
note, we notek � k the classical Euclidean norm,�: is the usual com-
position operator of functions,IR�0 stands for the set of positive real
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numbers,y(i) is theith time-derivative ofy with respect tot such that
y(0) = y � �min(A) is the smallest eigenvalue of the matrixA and
�max(A) denotes the largest eigenvalue ofA. A0 is the transpose of
A �

def
= stands for equality, by definition.Ck

n stands for the binomial
coefficient. We call that a functionr: IR�0 7! IR�0 is a K-func-
tion if it is continuous, strictly increasing andr(0) = 0. A function
�: IR�0 � IR�0 7! IR is aKL-function if for each fixedt � 0, the
function �(�; t) is aK-function, and for each fixeds � 0 it is de-
creasing to zero ast ! 1.

II. LTV D IFFERENTIATOR

Before giving the main result of this note, we need to give the fol-
lowing lemma.

Lemma 1: Let f(t): IR�0 7! IR be a uniformly bounded and a con-
tinuously differentiable function for allt � 0, then

i) lim
t!1

e�t
t

0

e� f(� )d� = 0 (1)

and

ii) lim
t!1

e�t
t

0

f(�)
�

0

e� d� d� = 0: (2)

Proof: i) Sincef(t) is uniformly bounded, we have

C1e
�t

t

0

e� d� � e�t
t

0

e� f(�)d�

�C2e
�t

t

0

e� d� (3)

whereC1 = mint�0(f(t)), andC2 = maxt�0(f(t)). The integral
e�t t

0
e� d� is called the Dawson’s integral which vanishes to zero

whent!1. To prove (1), we develop the expansions of the Dawson’s
integral for large values oft. Remark that for a fixed valueb

e�t
b

0

e� d� < e�t � eb � b ' O e�t ; t!1:

Thus, it yields a small contribution for large values oft. The first two
terms in the asymptotic expansion ofe�t t

b
e� d� are1=2t+1=4t3+

O 1=t5 ; t ! 1. If we continue the integration process, one can
obtain the following:

lim
t!1

e�t
t

0

e� d� = lim
t!1

1

2t
+

1

i=1

ai
2i+1t2i+1

= 0 (4)

wherea0 = 1 andai = (2i� 1)ai�1; 8 i. ii) We have

C1e
�t

t

0

�

0

e� d� d� � e�t
t

0

f(�)
�

0

e� d� d�

�C2e
�t

t

0

�

0

e� d� d�:

(5)

Sincee�� �

0
e� d� � k, where0 < k < 1; see [27, pp. 297–319],

then

lim
t!1

e�t
t

0

�

0

e� d� d� = lim
t!1

ke�t
t

0

e� d� = 0: (6)

Consequently, (2) is verified. Now, we are ready to introduce the basic
result of this note.

A. Differentiator Design

Theorem 1: Let �(t): IR�0 7! IR be a scalar continuous function of
classC1 and let(�i; i = 0; 1; 2; . . .) be a sequence of positive real
numbers. If the higher derivatives of�(t) satisfy

sup
t�0

�(i)(t) � �i; i = 0; 1; 2; . . . (7)

then the state vector of the following time-varying system:

_x(t) = A(t)x(t) +B(t)�(t) (8)

converges to the vector[ �(t) _�(t) ]0 when time elapses. We note

A(t) =
0 1

��2t2 �2�t
B(t) =

0

�2t2
; � 2 IR>0: (9)

Proof: To prove this result, it is sufficient to show that
limt!1 x1(t) = �(t). The state variablex1(t) verifies the differential
equation

�x1(t) + 2�t _x1(t) + �2t2 (x1(t)� �(t)) = 0: (10)

Equation (10) is transformed to an ordinary differential equation with
constant coefficients by taking the Liouville–Green transformation
y(t)

def
=x1(t)e(

�=2t ) which gives

�y(t)� �y(t) = �2t2e1=2�t �(t): (11)

Using the method of variation of parameters, we obtain

x1(t) =c1e
�(1=2)t(�t+2

p
�) + c2e

(1=2)t(��t+2
p
�)

� 1

2
�3=2e�(1=2)t(�t+2

p
�)

� t2e(1=2)t(�t+2
p
�)�(t)dt

I

+
1

2
�3=2e(1=2)t(��t+2

p
�)

� t2e�(1=2)t(��t+2
p
�)�(t)dt

I

(12)

where c1 and c2 are real constants. Define
v(t)

def
= t2e(1=2)t(�t+2

p
�)dt, v?(t)

def
= t2e�(1=2)t(��t+2

p
�)dt,

�1(t)
def
= � 1=2�3=2e�(1=2)t(�t+2

p
�),

�2(t)
def
=1=2�3=2e(1=2)t(��t+2

p
�), �1

def
=1=

p
2 (
p
�t+ 1),

�2
def
=1=

p
2 (
p
�t� 1). By integrating I1 and I2 by part, then

I1 = v(t)�(t)� v(t) _�(t)dt, andI2 = v?(t)�(t)� v?(t) _�(t)dt.
We have

v(t) =
e(1=2)t(�t+2

p
�) (�t�p�)
�2

(13)

and

v?(t) =
e(1=2)t(�t�2

p
�) (�t+

p
�)

�2
: (14)

Then, using (13) and (14), we have

�1v(t)�(t) + �2v
?(t)�(t) = �(t): (15)

Consequently

x1(t) = �(t) + c1e
�(1=2)t(�t+2

p
�) + c2e

(1=2)t(��t+2
p
�)

��1(t) v(t) _�(t)dt

I

��2(t) v?(t) _�(t)dt

I

: (16)
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Integrating I3 and I4 by part, we obtain
I3 = _�(t) v(t)dt� ��(t) v(t)dt dt, andI4 = _�(t) v?(t)dt�
��(t) v?(t)dt dt. We have v(t)dt = 1=�2e(1=2)t(�t+2

p
�) �

1=�3=2 e(1=2)t(�t+2
p
�)dt, and v?(t)dt =

1=�2e(1=2)t(�t�2
p
�) + 1=�3=2 e(1=2)t(�t�2

p
�)dt. Remark that

the quantity

� 1

�2
�1(t)e

(1=2)t(�t+2
p
�) _�(t)� 1

�2
�2(t)e

(1=2)t(�t�2
p
�) _�(t)

is equal to zero. Moreover

lim
t!1

_�(t)

�3=2
�1(t) e(1=2)t(�t+2

p
�)dt

= � lim
� !1

_�(t)p
2�

e�� e� d�1 = 0 (17)

lim
t!1

_�(t)

�3=2
�2(t) e(1=2)t(�t�2

p
�)dt

= lim
� !1

_�(t)p
2�

e�� e� d�2 = 0: (18)

To end the proof, it remains to study the limit of the function

�1(t) ��(t) v(t)dt dt+ �2(t) ��(t) v?(t)dt dt (19)

whent ! 1. Term (19) can be written as

� 1p
2�

e�� e� ��(t)d�1

+
1p
2�

e�� e� ��(t)d�2

+
1

�
e�� ��(t) e� d�1 d�1

+
1

�
e�� ��(t) e� d�2 d�2: (20)

Since the higher derivatives of�(t) are bounded and using the results
of lemma 1, we conclude that the term of (20) vanishes to zero when
t ! 1 and, therefore,limt!1 x1(t) = �(t).

B. Sensitivity

For practical implementation of differentiator (8) it is necessary to
saturate the timet, that appears in the expressions ofA(t) andB(t).
The saturation of the term�t in (8) shall be done when the differen-
tiation error becomes negligible. Let� be an arbitrary small positive
number, then we propose to rewrite the dynamics of the differentiator
(8) as

_x(t) =
0 1

�'2(t) �2'(t)
x(t) +

0

'2(t)
�(t) (21)

where'(t) is defined by

_'(t)
def
=

� for jx1(t)� �(t)j > �

0 for jx1(t)� �(t)j � �
(22)

such that'(0) = 0. Whenjx1(t)� �(t)j > �, the dynamics of dif-
ferentiator (21) is the same dynamics of (8). Forjx1(t)� �(t)j �
�, the function' becomes time-invariant, i.e.,' = �', where �' is
a positive constant. Consequently, the dynamics of the differentiator
(21) [or the dynamics ofx2(t) in (21)] is reduced to an output of
a stable time-invariant linear differentiator whose transfer function is
�'2s=(s+ �')2 (here,s denotes the Laplace variable). Since the state
x2(t) always represents the first derivative ofx1(t), then computing
the differencejx1(t)� �(t)j is a necessary and a sufficient tool to de-
cide about the precision of the differentiation error. Moreover, checking
the value ofjx1(t)� �(t)j will serve as a practical guide to compute

the time-derivative of�(t) without any knowledge of the upper bounds
of the�-derivatives.

III. D EFINITION OF THEASYMPTOTICALGEBRAIC OBSERVER

In this note, we will not give explicitly the detailed algorithms for
system estimation, but we refer the reader to [28]–[32] to see what have
been done in this area. We define the algebraic observability condition
as follows.

Definition 1: Consider the nonlinear system described by the fol-
lowing dynamic equations:

_x(t) = f(x(t); u(t))

y(t) = h(x(t))
(23)

wheref : IRn� IRm 7! IRn is continuously differentiable and satisfies
f(0; 0) = 0. x(t) 2 IRn is the state vector,u(t) 2 IRm is the input
vector, andy(t) 2 IR is a smooth nonsingular output. We assume that
y(t) andu(t) are continuously differentiable for allt � 0. System (23)
is said to be algebraically observable if there exist two positive integers
� and� such that

x(t) = � y; _y; �y; . . . ; y(�); u; _u; �u; . . . ; u(�) (t) (24)

where�(�): IR�+1� IR(v+1)m 7! IRn is a differentiable vector valued
nonlinearity of the inputs, the outputs, and their derivatives.

Notice that the last definition has been introduced in reference [33]
to characterize theuniform complete observability. Recall that for non-
linear systems, there exists a set of control inputs which renders system
(23) unobservable. We refer the reader to [34] for introductory discus-
sions of this problem. For our case, we define this class of bad inputs
as follows.

Definition 2: System (23) is algebraically observable for any input,
if the vector valued

x(t) = � y; _y; �y; . . . ; y(�); u; _u; �u; . . . ; u(�) (t)

is defined onIR�+1�IR(v+1)m 7! IRn for all u 2 U . We callU the set
of continuously differentiable control inputs for which the state vector
(24) is defined everywhere, and we noteU?, the set of bad inputs that
makes (24) singular.

In order to use the differentiator (8), we are obliged to guarantee
the boundedness of the output and its derivatives. For this reason, we
introduce the new output

y(t) = arctan(t) � y(t): (25)

The outputy(t) may be either bounded or unbounded function of
time. We will prove that whatever the nature ofy (i.e., bounded
or unbounded), the new outputy(t) enjoys the property of being
uniformly bounded along with its higher derivatives. For this reason,
we distinguish two cases.

Case 1y(t) Uniformly Bounded: Wheny(t) is uniformly bounded,
theny(t) is a globally Lipschitz, see Appendix for the proof. Using
the result of Khalil (see [35, Lemma 2.3, pp. 77–78]) which states
that the first time-derivative of a globally Lipschitz function is uni-
formly bounded function, then with the same analysis we conclude
that the second time-derivative ofy(t) is a globally Lipschitz if its
first derivative does, and so on. Repeating the last argument for the
higher time-derivatives ofy(t), we deduce that the higher time-deriva-
tives of any uniformly bounded outputy(t) are uniformly bounded. Re-
call that our interest is to prove the uniform boundedness ofy(t). Since
any derivativediy(t)=dti = di�1=dti�1 _y(t)=1 + y2(t) , 8 i is de-
fined everywhere and is expressed in terms of the derivatives ofy(t)
which are uniformly bounded, this implies immediately thaty(i)(t),
i = 1; 2; . . . are also uniformly bounded.

Case 2y(t) Unbounded: Sincey(t) is not singular and continu-
ously differentiable (by Definition 1), then whatever the nature of the
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divergence ofy(t) (i.e., a finite-time escape to infinity or slowly mono-
tone divergence), we could write thatlimt!1 y(t) = �1. To demon-
strate the boundedness ofy in this case, we introduce the following
lemma.

Lemma 2: Let y(t): IR�0 7! IR be a continuous function of
class C1 such that limt!1 y(t) = �1. Then the function
y(t) = arctan(t) � y(t) is uniformly bounded with its derivatives
y(i)(t); i = 1; 2; . . .. Furthermorelimt!1 y(i)(t) = 0 for all i � 1.

For the proof of this lemma, see Appendix.

A. Change of Coordinate

Because of the uniform-boundedness property ofy(t), it is advan-
tageous to rewrite the state vectorx in terms of they-derivatives.
Using the fact that_y(t) = 1(y(t); _y(t)) = 1 + y2(t) _y(t), and

�y(t) = 2(y(t); _y(t); �y(t)) = 1 + y2(t) (2y(t) _y(t)
2
+ �y(t)),

then the higher derivatives ofy can be easily computed in terms of
the outputy and the derivatives ofy. In other words, there exists a
diffeomorphism� = [ 1(�) � � � �(�) ]

0 (t) such that

y(i)(t) = i y; _y; . . . ; y(i) (t); 1 � i � �: (26)

Consequently, the state vectorx is written in the new coordinates as

x(t) =�(�; �) � �(�)

= y; _y; �y; . . . ; y(�); u; _u; �u; . . . ; u(�) (t): (27)

Remark 1: In order to smooth the higher derivatives ofy(t), it is
recommended to takey(t) = arctan(�y(t)), where� is small positive
parameter.

In the sequel, all the state variables are time-dependent, and for
notation simplicity, the time variablet is omitted. The whole design
of the asymptotic algebraic observer for multiple-input–single-output
(MISO) nonlinear systems is given in the following theorem.

Theorem 2: Consider (23). If (23) is algebraically observable, then
for anyu 2 U such thaty is continuously differentiable, the dynamic
system

x̂ = y; �2; �4; . . . ; �2�; u; _u; �u; . . . ; u
(�)

_�1 = �2
_�2 =��2t2 (�1 � arctan(y))� 2�t�2
_�i = �i+1

_�i+1 =��2t2 (�i � �i�1)� 2�t�i+1;

i =3; 5; 7; . . . ; 2�� 1 (28)

is an asymptotic algebraic observer for system (23) where the param-
eter� 2 IR>0 is introduced to master the rate of convergence of the
derivative estimates.

Proof: We see that (28) is a concatenation of the differentiator
given in Theorem 1. System (8) is augmented in order to have the�th
derivative ofy. Using the results of Theorem 1, we obtain for(1 � i �
�) limt!1 y(i) = �2i: Consequently

lim
t!1

 y; �2; �4; . . . ; �2�; u; _u; �u; . . . ; u
(�)

� y; _y; �y; . . . ; y(�); u; _u; �u; . . . ; u(�) = 0: (29)

B. Example Catalyst Batch Reactor

Consider the second order chemical kinetics, coupled with a second
order decay rate of the catalyst activity [36]

_x1 = �kx2x
2
1

_x2 = �kdx
2
2x1

y = x1

(30)

wherex1 is the concentration of the reactant,k is the reaction rate con-
stant,x2 is the catalyst activity, andkd is the specific decay constant.
From (30), we havex1 = �1(y) = y, andx2 = �2(y; _y) = � _y=(ky2)
which implies thatx1 andx2 are algebraically observable. As we have
introduced previously,y = arctan(y). Then _y = 1(y; _y) = _y(1 +
y2), which gives

x1 = 1(y) = y

x2 =�2(�) � 1(�) =  2 y; _y = �
(1 + y2) _y

ky2
: (31)

According to (28), the observer is readily constructed as

x̂2 = � (1+y )�

(ky )

_�1 = �2
_�2 = ��2t2 (�1 � arctan(y))� 2�t�2

(32)

where�1 and�2 converge asymptotically toy and _y, respectively. As
we have mentioned in Section II-B, practical realization of observer
(32) needs the saturation of terms�t that appear in the right-hand side
of (32). For this purpose, observer (32) is replaced by

x̂2 = � (1+y )�
(ky )

_�1 = �2
_�2 = �'2 (�1 � arctan(y))� 2'�2

_' =
� if j�1 � arctan(y)j > �

0 if j�1 � arctan(y)j � �

(33)

where� is any desired precision that seems to be satisfactory in practice.
In order to show the effectiveness of observer (33), in Fig. 1 we have
plotted the statex2 in a solid line and its estimate in dashed line. The
simulation is done fork = 1, � = 10, and� = 10�4. Fort � 11s the
desired observation errorjx2 � x̂2j is reached(' �), and' is totally
saturated. Suppose now that some additive controllers are present in the
dynamics of the last reaction (30), i.e.,

_x1 = �kx2x
2
1 + u1

_x2 = �kdx
2
2x1 + u2

y = x1

(34)

then by elimination of the unmeasured statex2 from the first equation
of (34), we havex2 = u1 � _y=ky2 = u1 � _y(1 + y2)=ky2. Conse-
quently, the corresponding observer is

x̂2 = u �� (1+y )

ky

_�1 = �2
_�2 = ��2t2 (�1 � arctan(y))� 2�t�2:

(35)

IV. OTHER SCHEMES OFPRACTICAL OBSERVERS

In this section, we show how can we combine the algebraic observer
with classical Luenberger observer for nonlinear systems. Consider the
nonlinear system

_x =Ax + f(x; u) + g(y; u)

y =Cx (36)

with the statex evolving on an open connected subsetM of IRn, the
inputu 2 IRm and the outputy 2 IR; the vector valuedf :M�IRm 7!
IRn is supposed to be smooth for simplicity withf(0; 0) = 0 and
(A;C) is assumed to be an observable pair. The class of systems given
in (36) is fairly general, but it is chosen herein for its popularity. If the
state vectorx verifies (27), then we rewrite the system dynamics (36)
as follows:

_x =Ax + ~f (�x; �u) + g(y; u)

y =Cx (37)

where�x = y; _y; . . . ; y(�) , y = arctan(y), �u = u; _u; . . . ; u(�) ,

x =  (�x; �u), and ~f (�x; �u) = f(�; �) �  (�; �). The vector valued non-
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Fig. 1. State and its estimatê .

linearity ~f(�; �): IR�+1 � IR(�+1)m 7! IRn is supposed to be globally
Lipschitz with respect to�x with a Lipschitz constant�, i.e., for all�x1,
�x2 2 IR�+1 and allu 2 U

~f(�x1; �u)� ~f(�x2; �u) � � k�x1 � �x2k : (38)

The combination of the algebraic observer and the Luenberger observer
is summarized in the following theorem.

Theorem 3: Consider system (37). For sufficiently large and for
anyu 2 U such thaty is continuously differentiable, the following
system:

_̂x =Ax̂ + ~f ��; �u + g(y; u) + PC0 (y � Cx̂)

_�1 =�2
_�2 =� �2t2 (�1 � arctan(y))� 2�t�2
_�i =�i+1

_�i+1 =� �2t2 (�i � �i�1)� 2�t�i+1;

i =3; 5; 7; . . . ; 2�� 1

AP + PA0 � PC 0CP +Q() = 0 (39)

is an asymptotic converging observer of (37) whereQ() =
diag C1

n
2; C2

n
4; . . . ; Cn

n
2n , and��i = �2i; (1 � i � �).

Proof: Lete = x�x̂, and let us takeV = e0P�1e as a Lyapunov
function to the error dynamics

_e = A� PC 0C e+ ~f (�x; �u)� ~f ��; �u : (40)

Then

_V =_e0P�1e+ e0P�1 _e

=e0 A0P�1 + P�1A� 2C 0C e

+ 2e0P�1 ~f (�x; �u)� ~f ��; �u : (41)

UsingP�1A+ A0P�1 = C 0C � P�1Q()P�1, then we obtain

_V �� e0 P�1Q()P�1 + C 0C e

+ 2e0P�1 ~f (�x; �u)� ~f ��; �u

�� e0 P�1Q()P�1 e

+ 2 e0P�1 ~f (�x; �u)� ~f ��; �u : (42)

Let z = P�1e, thenV = z0Pz. Using (38), we have

_V ��z0Q()z + 2�kzkk�� � �xk

���min (Q())kzk2 + 2�kzkk�� � �xk

��
2

2
kzk2 + 2

�2

2
k�� � �xk

2

��
2

2�max (P )
V + 2

�2

2
k�� � �xk

2
: (43)

Let � = 2=2�max (P ), this gives V � e��tV (0) +

2�2=2
t

0
��(s)� �x(s)

2
ds, or

kek2 � C1ke(0)k
2e��t+ C2

t

0

k��(s)� �x(s)k
2
ds (44)

such thatC1 = �max (P ) =�min (P ), andC2 = 2�2=2�min (P ).
Let us take � ke(0)k2 ; t = C1 ke(0)k

2 e��t, r(t) =

C2
t

0
��(s)� �x(s)

2
ds, then using the definition of input-to-state

stability (ISS) and result of Theorem 1, then we conclude that the error
dynamics is ISS stable with respect to the difference��(t)� �x(t) ;
see [37] for more details on ISS.1 Since all the estimates of the
output derivatives converge asymptotically to the exact ones, then the
observer error is asymptotically stable.

Remark 2: The sensitivity of observer (28) to noise is important, but
observer (39) behaves so much resistant to eventual additive noise.

1System (23) is (globally) ISS if there exist a -function : IR IR
and a -function such that for each and (0) IR , it holds that

( (0) ) ( (0) ) + ( ) for each 0.
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V. CONCLUSION

In this note, a new observer design methodology is presented. The
whole design of the nonlinear observer is based upon differential alge-
braic concepts with time-varying linear system theory. We showed that
the design method is free from several cumbersome computations and
some strong geometric conditions, generally encountered in geometric
observer design methods. The generalization of the observation pro-
cedure for multiple-input–multiple-output systems is possible and the
observer strategy is exactly the same as we have developed for MISO
systems. To do so, it is sufficient to recopy the dynamics of the MISO
algebraic observer for different output signals. The simplicity and the
straightforwardness of our observer design methodology give a first
step for algebraic approach to nonlinear observer design.

APPENDIX

The Lipschitz Property of Uniformly Bounded Functions

When the outputy is continuously differentiable and uniformly
bounded, then using the definition of continuity, we could say that
for every� > 0, there exists� > 0 such thatjt1 � t2j < � implies
jy(t1) � y(t2)j < �. For anyt1 6= t2, we can find� > 0 such that
jt1 � t2j > �. Then,jt1 � t2j < � implies jy(t1)� y(t2)j < �=� � �.
This givesjy(t1) � y(t2)j < �=�jt1 � t2j. Whenjt1 � t2j � �, we
can writejy(t1) � y(t2)j � 2 sup

t�0 jy(t)j = 2sup
t�0 jy(t)j=� � �

� 2sup
t�0 jy(t)j=�jt1 � t2j. Finally, we conclude that for any

t1 6= t2, jy(t1) � y(t2)j � max 2sup
t�0 jy(t)j=�; �=� jt1 � t2j.

Consequently,y(t) is globally Lipschitz.

Proof of Lemma 2

Here, the outputy(t) is assumed to be unbounded. We shall prove
that the new outputy(t) = arctan(y(t)) is uniformly bounded func-
tion. We have_y(t) = _y(t)=1 + y2(t). Sincey(t) 2 C1, then _y(t) is
defined everywhere andlimt!1

t

0
_y(s)ds = � arctan(y(0))��=2:

Using Barbalat’s lemma, we conclude thatlimt!1
_y(t) = 0. With the

same analysis and using the fact that the higher derivatives ofy(t) are
defined everywhere, we obtain

lim
t!1

t

0

y(i)(s)ds = lim
t!1

y(i�1)(t)� y(i�1)(0)

=�y(i�1)(0); i � 2: (45)

Then,limt!1 y(i)(t) = 0 for i � 1;which implies that the derivatives
y(i)(t); i � 1 are finite energy functions or uniformly bounded overIR.
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