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Abstract. This paper deals with the design of two independent nonlinear controllers that
swing-up and stabilize an inverted pendulum. The control strategy is established without any
approximation of the nonlinear terms in the model equations. The observer design is achieved
through the so-called regularization techniques by B-spline functions. Numerical simulations
are presented to illustrate the effectiveness of the control procedure.
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1. INTRODUCTION

Historically, nonminimum phase underactuated systems,
i.e, systems where the number of control inputs is less
than the number of degrees of freedom, have been given
a lot of attention and their properties have been studied
in detail. Some of these systems behave as linear sys-
tems after an invertible nonlinear change of variables
and have been classified with the aid of methods from
differential geometry. Other systems were studied in
the context of differential flatness theory which gives
powerful tools for trajectory generation for nonlinear
systems [11], [17]. However, the control of certain sys-
tems remains challenging, because their properties can-
not verified or because they do not satisfy the lineariza-
tion conditions. The inverted pendulum is one of those
systems which is partially linearizable and its control
remains an open problem, see [21], [12], [15] for re-
cent works in this domain.

Although controllers of very different type exist for
the inverted pendulum, all these controllers have in com-
mon that they are discontinuous. Moreover, the obser-
vation of the unobservable states, generally the veloci-
ties, necessitates a suitable change of coordinates to put
the system in its canonical form. In this article we shall
develop two discontinuous nonlinear controllers: the
first is conceived to make the stable equilibrium point
of the pendulum an unstable point until the pendulum
leaves the positionwhere the controller is singular. The
second will then catch the pendulum and steer the whole

system to the desired equilibrium. A part of this article
is devoted to the presentation of a numerical compu-
tational method used as an obsever. It can be proved
that the controller-observer converges if the approxi-
mation error of the numerical method are bounded, but
the proof willnot be written out here fore sake of brevity.

The paper is organized as follows. In Section 2,
the state model describing the dynamics of the inverted
pendulum is presented. Section 3 is devoted to the con-
struction of a nonlinear controller that swings up the
pendulum to its unstable equilibrium without concern
of the cart displacement and the design of another con-
troller which steers the cart and the pendulum to their
final equilibriums. The numerical method of velocity
observation is presented in Section 4. In Section 5 sim-
ulation results are given to demonstrate the effective-
ness of the control strategy.

2. THE MODEL

Consider the inverted pendulum illustrated in Fig. 1.
A cart of massM� has a composite pendulum (stick of
massM�, and another massM attached in the end of
the stick). The inertia momentums of the stick and the
massM with respect to their gravity centers areJ� and
J respectively.L denotes the length of the stick, and
L� the distance between the gravity center of the stick
and the pointO. Letx�t� be the position of the cart in
an inertial frame, and��t� the angle (taken clockwise)
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Figure 1: Scheme of the inverted pendulum

between the stick and the vertical axis.

The equations of motion are given by the Lagrange
formulation in the following form

meq �x� N �� cos � � u� F� �x� N ��� sin ��

Jeq �� �N �x cos � � �c �� � g N sin ��

��
� ���

whereJeq � J�J��M�L��ML,meq � M�M��
M�, N � �M�L� � ML�, c andF� are the friction
coefficients for the motion of the cart and the pendu-
lum. If we note the state vectorxT= (x�� x�� x�� x�� �
�x� �� �x� ���, then the state representation of the inverted
pendulum model is expressed (after solving the last sys-
tem��� with respect to�x and��) as follows

�x� � x��

�x� � x��

�x� � Jeq��F�x��Nx�
�
sin x��

meqJeq��N cosx���

�N cosx���cx��gN sin x��
meqJeq��N cosx���

� Jeq
meqJeq��N cosx���

u�

�x� � �N cos x���F�x��Nx�
�
sin x��

meqJeq��N cos x���

�meq��cx��gN sin x��
meqJeq��N cosx���

� N cos x�
meqJeq��N cosx���

u�

y� � x��

y� � x��

����������������������������
���������������������������

����

3. CONTROLLER DESIGN

In this section, we are interested in the design of a con-
troller which drives the pendulum from its natural pen-
dent position�x� � �� to the upright position (x� � 	)
with the cart being in the desired positionx�� at the
end of the control. Recall that on one hand, the system
we are treating has nonminimum phase dynamics and

is partially decouplable, and on the other hand is gov-
erned by a limited source of energy. In order to over-
come this difficulty and fulfill such type of stabiliza-
tion, our strategy of control is as follows

At first, let us linearize the dynamics of the cart by
the controller

u�x� v� �

�
meq Jeq �N� cosx�

�
�
v

Jeq
� F� x�

�Nx�
� sinx� �

N cosx� ��c x� � gN sinx��

Jeq
� (1)

wherev is the new controller where our study will be
focused on. The equations of the system��� become��
	

�x � v�

�� � g N

Jeq
sin � � c

Jeq
�� � N

Jeq
cos � v�

(2)

We can now analyze the problem of swinging-up the
pendulum and the stabilization of the whole system at
the desired states. The set of equations���� becomes

�x �



BB�

x�
x�
	

gN sin x��cx�
Jeq

�
CCA�



BB�

	
	



�N cosx�
Jeq

�
CCA v (3)

3.1. Swinging up the pendulum

The basic idea for swinging up the pendulum to the up-
per plane with a limited source of energy is to find a
controllerwich could realize gradual increase in the am-
plitudes of the pendulum anglex� after several swings.
It is clear that if we dispose of a sufficient amount of en-
ergy the pendulum could be rised to its unstable equi-
librium with one swing. This problem was seen either
as a problem of regulation of the total energy of the
pendulum [1], [19], [3] or as minimum time optimal
control which leads to a bang-bang control [14], [1]. In
this paper we suggest another approach which consists
in finding a controllerv giving back the nonlinear dy-
namics of the pendulum anglex� close to the dynamics
given by the differential equation

�� � ���n �� � �n
� sin � � 	� 	 � � � ��� (4)

This means that by fixing such dynamics, we want to
increase gradually the amplitudes ofx� until intersect-
ing the neighborhoodN� � f�x� �� �x� ���� j�j � c�g
where another controller is designed to stabilize the pen-
dulum around its unstable equilibriumx� � 	, and the
cart at the equilibriumx � x��. A controller of the
following type

v� �

��
	

	 if c� �
�j � �

�
,

�a�
� e�j
	�j��

�sign� �� cos �� if �
� � � � ��

� .
(5)



fulfills this aim. The philosophy behind this controller
is to pump energy into the pendulum by driving it in
the direction of the angular displacement�, but only
in the lower plane where�� � � � ��

� . In the upper
plane we would rather set the controllerv� to zero so
that we could intersect the neighborhoodN� with weak
velocities (�� � 	� �x � 	) and thus while switching on
the second controllerv�, only a minimum energy will
be required to drive the system to its final equilibrium.
Note that by applying (5) the dynamics of� is a non-
linear second order equation given by��������
������	

�� � gN

Jeq
sin � � c

Jeq
���

if c� � j�j � �
� �

�� � gN

Jeq
sin � � c

Jeq
�� � a

N cos �sign�cos ��
Jeq

��
 � e� j 	� j�sign� ���
if �

� � � � ��
� �

(6)

These two equations could be analyzed either by the
phase plane method or by the theory of periodic orbits
[10]. Notice that the term

�a�
� e�j
	�j�sign� ���

is smooth, bounded and changes its sign while�� changes

its sign, because�
�e�j
	�j�sign� �� cos �� is an odd func-

tion of ��. We underline also that the term

a� �
aN cos �sign�cos ��

Jeq

is bounded and positive that gives back the value of the
new controllerv extremely dependent on the term�
�

e�j
	�j�sign� ���. Remark that for �� � 	� �
� e�j

	�j�sign� ��� � j �� jsign� ��� � ���

(6) can be approximated by

�
�� � gN

Jeq
sin � � c

Jeq
�� if c� �

�j � �
� ,

�� � gN

Jeq
sin � � �a� � c� �� if �

� � � � ��
� .

(7)

It is necessary to choosea 		 c to get a divergent re-
sponse of�, all the same whenj �� j � � the quantity

�
� e�j
	�j�sign� ��� � sign� ����

Therefore, equations (6) could be approximated to�
�� � gN

Jeq
sin � � c

Jeq
�� if c� �

�j � �
� ,

�� � gN

Jeq
sin � � a sign� ���� c �� if �

� � � � ��
� .

(8)
From this analysis we conclude that whenever the

pendulum rotates in the lower plane its total energy is
an increasing function of time. However, this latter be-
gins to diminish under the effect of the friction force in
terms of�c ��� when the pendulum begins to rotate in
the upper plane. Let us now describe the behavior of

the cart under the effect of the controllerv�. Suppose
that��t� is the solution of (6). This solution is a pe-
riodic orbit whose amplitudes increase with increased
values of the parameter�a�. The acceleration of the

cart �x � �a �
 � e�j
	
� �t�j�sign� ���t� cos���t���

is not only a bounded function of time but a periodic
function as well. It results that the trajectoryx�t� given
by the solution of the linear system�x � v� is a also
a bounded trajectory and converges to a periodic solu-
tion. The higher the value of ”a”, the greater of the dis-
placement of the cart.

3.2. Stabilizing the cart and the pendulum in the
upper plane

In this section we will construct a nonlinear controller
wich stabilizes both the cart and pendulum around the
equilibriumx� � �x��� 	� 	� 	� in the domainx � IR�
���� � �� �

�
� � �� �� IR�, where�� � �

� � c� is a de-
sign angle which is chosen with respect to the available
amount of energy and the restricted maximum value of
the cart displacement. We summarize the strategy of
the controller in the following statement :

Proposition 3.1 Consider the system ���� under the feed-
back

u�x� v�� �
Jeq

N cos x�

�
g N

Jeq
sin x� �

c

Jeq
x� � 
 tan x�

� � tanh x� � e�� x�
�

�k�x� � x��� � r x��
�

(9)

in the domain� �
�
IR� ���� � �� �

�
� � �� �� IR�

�
.

If the following conditions are satisfied

	 � is large enough,
 and� are positive constants.

	 The polynomial

� � �� � r�� �

Jeq � k Jeq � r c

Jeq
� �

r g N � k c

Jeq
 �

k gN

Jeq
(10)

is Hurwitz,

then the equilibrium point �x��� 	� 	� 	� is asymptoti-
cally stable. �

Proof. Consider the system (���) under the feedback
u�x� v��. If we linearize the closed loop system around
the equilibrium point�x��� 	� 	� 	�, the dynamics of the
compensated system around this equilibrim is

� �x � �A�x�

where

�A �
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k

g N��Jeq
N

r
�c�� Jeq

N
�N�k

Jeq
g N
Jeq

� g N��Jeq
Jeq

N�r

Jeq

�c
Jeq

� c�� Jeq
Jeq

�
CCA �



If the coefficients
� �� k� r are selected so that�A is an
Hurwitz matrix whose characteristic polynomial is the
polynomial given in (10), then the equilibrium point
�x��� 	� 	� 	� is asymptotically stable. We have to prove
now that the unstable equilibriumof the pendulum�� �
	� �� � 	� is an attractive point if��� ��� � ���� �
�� �

�
� � �� �� IR. If x� is far from the unstable equi-

librium, v� is approximately equal to

Jeq
N cos x�

�
g N

Jeq
sin x� � 
 tan x� � � tanh x�

�
c

Jeq
x�

�

so one can take the followingcandidate Lyapunov func-
tion

V �x�� x�� � �
 ln jcos x�j�



�
x�

�

and show that the time derivative ofV ,

�V � 
x� tan x� � x�

�
gN

Jeq
sin x� �

c

Jeq
x�

�

� x�

�
g N

Jeq
sin x� � � tanh x� � 
 tan x�

�
c

Jeq
x�

�
�

� �� x� tanh x� � 	�

and thus the point��� ��� � �	� 	� is an attractive point.
�

 1

Lower plane

Upper plane

v = 0v=0

v = v

v = v

2

Figure 2: The strategy of the controller in the different
regions.

We summarize the control strategy asu � u�x� v�
where

v �

�
v� if x 
� N�,
v� if x � N�.

(11)

4. STATE OBSERVATION

In this section we show how to estimate the unknown
velocitiesx� andx� by a numerical procedure. LetW

a moving window of the discrete observation�yk� � � � �
yk�n� . The observation vectorW is supposed to be
computed with a certain error� which satisfies the fol-
lowing conditions

E ��i� � 	�

E ��i�j� � 	� i 
� j�

E
�
�i
�
�
� ���

�� denotes the variance of the random error. The nu-
merical procedure aims at reconstructing the smooth
continuousy along with its higher derivatives by con-
sidering the following minimization problem

argmin
�y

�



n
ky � �yk� � kT �yk�

�
(12)

where the matrixT is an�n�m�� �n� matrix of gen-
eral row

��
�m�j�� Cj��
m j � 
� � � � �m� 
� (13)

The normk�k denotes the Euclidian norm, and is a
smoothing parameter chosen in the interval�	���. We
look for the solutionof (12) in the space of the B-spline
function of order�m, thus the minimization problem
turns out to be the following problem

argmin
�

�



n
�y �B 
�t�y � B 
� � 
tBtRB 


�
(14)

such that

R �� T t T�

Bi�j �� bj��m�ti�� i � 
� � � � � n� j � 
� � � � � n�

and�y is replaced by

nX
i��


i bi��m�t�� (15)

The vector
 � IRn is called the control vector of the
spline, andbi��m�t� denotes thei-th B-spline function.
Minimizing (14) with respect to
, we get


 � �nBtRB �BtB���Bt y� (16)

The smoothing parameter is supposed to be the min-
imizer of the generalized cross validation criterion

V �� �
�
n
knRB�nBt RB � BtB���Bt�k��

�
n

Trace�nRB�nBt RB �BtB���Bt�
��

(17)
We refer the reader to [9] for more details about the al-
gorithm.

5. NUMERICAL SIMULATIONS

Here, the system���� was simulated for the initial con-
ditionx�T � �
� �� 	� 	�T with the results depicted in



the figures 3, 4, and 5. All the responses of the sys-
tem are shown for the control law incorporating the ob-
server estimates. We supposed that all the measurable
states are corrupted by a zeromean noise of variance
�� � 	�	�. The performances and the boundedness of
the resulting responses illustrate the good estimates of
the derivatives given by the numerical procedure dis-
cussed in Section 4. We have summarized both the sys-
tem parameters and the controller parameters in the fol-
lowing tables

System parameters Values
meq 1.00Kg

Jeq 0.140N�m�s

rad
N 0.340Kg�m
g 10.0m�s�

F� 0.01
c 0.01

Controller parameters Values

 57.653
� 16.456
k 3.335
r 4.456
� 50.00
a 3.00
x�� 0.50m

6. CONCLUSION

In thispaper we gave a design methodologyof two con-
trollers that guarantee the stabilization of an inverted
pendulum. The control strategy was based first upon
linearizing the dynamics of the cart by non-interactive
controller. Then by exploiting the simplicity of the re-
sulting system, the expression of the new controller is
derived to swing up the pendulum to the upper plane.
In order to achieve the stabilization objective, a sec-
ond nonlinear controller is proposed to steer the sys-
tem to its final equilibrium. Moreover, the paper ad-
dressed the problem of observation of the velocities by
a numerical method of regualarization by the B-spline
functions. This approach of observation could be gen-
eralized to any highlynonlinear mechanical system where
the velocities appear as unobservable states.
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et équations différentielles. Hermann, 1982.

[19] Spong M. W.: Energy based control of a class of
underactuated mechanical system. 13th Triennial
Word Congress, San Francisco, USA., 1996, pp
431–435.

[20] Wei Q., Dayawansa W. P. , and Levine W. S.:
Nonlinear controller of an inverted pendulum
having restricted travel. Automatica, Vol. 31,
1995, pp 841–850.

[21] Yurkouich S.and Widjaja M.: Fuzzy controller
synthesis for an inverted pendulum system. IFAC
Control Engineering Practice, Vol 4, 1996, pp
455–469.


