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ABSTRACT

In this paper, we develop discontinuous controllers for stabiliz-
ing n—dimensional nonholonomic mechanical systems given in
power form. We show that the stabilization of the whole system
turns out to be a simultaneous stabilization of (n — 3) driftless
subsystems. The control strategy is based on the technique of in-
variant manifolds. Moreover, it is shown that we could improve
the rate of convergence of the state vector by the use of dynamic
controllers. A numerical procedureis proposed to filter the noisy
measurement without affecting the dynamic of the controller.

Keywords: Invariant manifolds, Stabilization, Numerical meth-
ods.

1. INTRODUCTION

The stabilization of driftless mechanical systems has received
more attention during the last few years. Such systems arise when
modelling mechanical systems with nonholonomic constraints,
i.e, with non-integrable constraints. The examples are numer-
ous, and the reader is reffered to [8], [21] for recent works in
modelling and control of such type of systems or the existance
of change of coordinates that permit to put the original systems
in their power form.

In practice, it is often required to maintain the mechanical
system around a desired configuration. This task is viewed as a
stabilization problem where the desired configuration is made an
asymptotically stable equilibrium point. Several solutions were
proposed to solve this problem. The first approach is an open-

loop strategy. This involves defining the control inputs as func-
" tions of time so that the initial state of the model is transferred
to the desired final state [17]. By the application of such a strat-
egy of control, it is clear that the system performances are de-
graded by modelling additive external disturbances. The second
approach consists in feeding back the state of the system by sta-
bilizing controllers which ensure a certain robustness to mod-
elling errors and noisy measurement. In [5]; Brockett has shown
that driftless systems cannot be asymptotically stabilized around
any desired point with continuous autonomous feedback. This
result has motivated researchers to derive a diversity of discon-

tinuous controllers. In [4] Bloch et al derived piecewise analytic
feedbacksto achieve stability. Canudasde Wit and S¢rdalen de-
veloped peicewise smooth controllers for a set of low dimen-
sional examples [9] , while Somson demonstrated that continu-
ous timeperiodic feedbacks could stabilize a nonholonomic sys-
tem [19] . Coron showed that for a large class of driftless sys-
tems there exists a smooth time periodic feedback that renders
the desired equilibrium point globally-asymptotically stable [6].
In [18] Pomet gave the methodology to adapt the ideas in Coron’s
proof to explicit an algorithm for deriving time-periodic smooth
feedback for a more restrictive class of driftless systems. Ex-
plicit expressions for the stabilization of a chained form of drift-
less systems were proposed by Teel et al in [20]. Other authors’
like Fliess et all [10], Martin and Rouchon [14], have looked at
the stabilization of such a type of systems via differential flat-
ness approach.

Invariant manifolds techniques appeared to be powerful tools
for the stabilization of driftless mechanical systems. The inter-
ested reader is referred to [21] to see the progress in this area.

In this article, we develop a new kind of discontinuous con-
trollers in conjunction with invariant manifolds. We shall show
that when the states lie on the intersection of the set of invariant
manifolds, dynamic controllers are proposed to improve the rate
of convergence of the whole states. It is shown that by the appli-
cation of these dynamic controllers, we obtain the same invari-
ant surfaces as obtained by linear static controllers. Moreover,
the methodology of the design of the control laws described herein,
is thus adapted to any driftless system which could not put in
power form. In addition, the rate of the convergenceof the states
is mastered by a suitable choice of regulation models (first or
second order model) to the first two states of the system. In or-
derto give a goodinsight of this paper, in section 2 we show how
we construct the invariant manifolds and give the detailed strat-
egy of the stabilizing controller to the n—dimensional systems
in power form. Section 3 is devoted to the numerical procedure
used as a filter. In section 4 we give the stabilizing controller
for a particular case of a driftless system in power form where
simulations results are presented.
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2. STATEMENT OF THE PROBLEM

2.1. CONSTRUCTION OF THE INVARIANT MANIFOLDS

We consider the n—dimensional underactuated systems in power
form with two inputs and two integrators described by the state
model equation

1 = uy,

o L i-2 -
r;—mxl uz, )—2,"'1771
(z)
U = Vi,
thy = va.
For 8 > 0, let us define
~2Buy — 4821, e))
v2 = —2Buy—48%x,. V)

n

Then, we cite the following result

Lemma 2.1 Consider the system (X)) under the feedback (1),
(2) with the initial conditions u1(0) = —Bz1(0), u2(0) =

—B22(0)
o Then, the family of the manifolds

1 .
sj(z) = {zj42 - mn’ zz =0,
.=11"'1n—2}a

are invariant surfaces which verify $(z) = 0.

e Forall

n—2
1 .
X0 € ﬂ{xj.,..z — _‘.—"‘fxl] z2 =0,
j=1 (G +1)!

j=11"'vn—‘2}1

all the states converge exponentially to zero. O
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Figure 1: The resulted invariant manifold s, () := z3 —
%.’l}l.’b‘g for the n—dimensional system in power form.

Proof. By the application of the dynamic controllers (1), (2), the
time responses of the states x; (t) and z2(t) are respectively

z1(t) = 21(0)e™® cos(v3B8),
z2(t) = 2(0)e™® cos(V3BL).

Letno = %,then ;;: = 1o, thus u; = 1o up. Conse-
quently

Z1uz = T2 t. 3
Forj=1,---,n—2
.. J i-1 1 j
8; = x -t T — —
7 I1+2 (.7+1)! 1 2 Uy (J+1)|$1 u
_ J =1
= (]+ 1)!.1:1 (.'I,‘1 Uz — T2 ul)

= 0.

Integrating both sides of the model equations (X)) over [0, ¢] then
the time responses of the states zx(t), k = 1,---, n have the
following forms

z1(t) = 21(0) e P* cos(v/381),
z2(t) = 22(0) e™P* cos(v/381),
zx(t) = (—k-:l-—2—)-!-xxk'2(1') uz(7)dr +
< . AT
zx(0) — mm"_g(O)zg(O), k=3,---,n.
N ~ .
Substituting
z1(t) = £1(0)e™ cos(V3Bt),

uz(t) = —PBz2(0)e " cos(v/3Bt) — V30z2(0) sin(v30t),

in the expression of the k-th state zx(t) and using the fact that
forany (1 > 0

lim /e—(’f cos((z7)dr =

Jim €47 [(G sin (G27) = €1 cos (7)) /(G + ¢2%))
=0.

and since cos™t, (v € N*) could be factorized as follows

=S DY

i€{r,v-2,,1}
ie{o1,, 354}

CJ 77 cos(it), if visod,

2‘71—1 x Z

i€{v,7—2,,2}
ie{or,, 31}

) 2
CJ77 cos(it) + %, if v is even.

Thus, one could concludethatlim; o0 (Y% (), k =3,---,n) =
0. If the vector zo is chosen as (sk(zo) = 0, k = 3,--+,n)
then all the state trajectories (z1(t), z2(t), - - -, Tn(t)) converge
exponentially to the origin. ¢

Remark 2.1 If we applied the static controllers uy, = —z1,
ug = —x9 instead of the dynamic controllers (1), (2), we would
obtain the same invariant manifolds (s;(z), j=1,--- ,n—2)
definedin lemma 2.1. ¢
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Remark 2.2 The manifolds (s;(x), j =1,-:-,n—2) become
no longer invariant if the coefficient f3 is not the same for the
controllers vy and va.e

Remark 2.3 The dynamic controllers (1), (2) do.not impose a
constraint of observation of the velocities, because these ones
represent the control inputs.e

2.2. THE STABILIZATION PROCESS

The question now is how to steer the system (Z) to the origin if
the initial states do not comply with the condition ﬂ;-‘;f 85(zo)
= 072. The key to realize such control design is to find a con-
troller which renders the conditions { ﬁ;';f si(x) = 0} verified,
and then switch on the dynamic controller (1), (2) which ensures
the invariance of the manifolds (s;(z), j =1,---,n —2). Let

vip = ug,
v2,1 = P1U2— Z2Uj,
§1i = o1,
f1 = 81,
&1 = s2,
i = s,
€n-11 = 8n-2.

be the first change of coordinates, and suppose that there exist
v1,1 = v*1,1,and va,; = v*3; that stabilize the following (r ~
1)-dimensional system

€.1,1 = ‘Ul,ly
(Z)e, @

§in =561 v, J=2,n-1

at the origin. It is obvious that by switching on the dynamic con-
trollers (1), (2) we will stabilize the system (X) at the origin,
‘We conclude that the stabilization of the n-dimentional system
requires the stabilization of another driftless system of dimen-
sion n — 1. Therefore, we could repeat the same process of con-
trol for the obtained (» — 1) —dimensional system by construct-
ing new hypersurfaces under the effect of static or dynamic con-
trollers and designing a new subsystem of lower dimension after
a change of coordinates.. This process must be stopped until we
get a 3-dimensional driftless system. The stabilization process
will be started from the last resulting system and ends with the
dynamic controllers (1), (2). Exploiting the structure of the re-
sulting system (X)), , then we arrive to the main result summa-
rized in the following statement

* Theorem 2.1 Consider the system (Z) under the feedback (1),
(2) and let

V1,0 1= U141,
V2,0 1= &1,6—1 V2,0—1 — £ €201 V1 21,
1,0 0= 1,01,

&)

&e =871y,

=2 n=f =1 n~3.
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be the familly of the recursive change of coordinates for each
step £ such that

UI,O = Uy,
V2,0 i= U2,

. ©)
Ej,o =T 1= L,-eyn,

3[0]]'(.) =si(),7=1,---,n—2.

For eachstep £, £ € {1,2,---,n — 3}, we construct the sub-

system (Z¢,) whose states are £¢ = (£1,6,"++ , €n—s,¢). Under
the static feedback
vi,e = —E1,e,
9
vo,e = —(£+ 1) é2,e,
or the dynamic feedback
e=—2Bvie—48%¢1e; 8> 1,
(8)
2,0 = —(£4+ 1)1 (2B v2,e + 482 E2e),

with
{ v1,6(0) = =B £1,6(0)
v2,¢(0) = —B £2,¢(0).

o Thenext{—th generated subsystem (L, ) has the follow-
ing form

ISWERTWS

- j—1 j—2 :
o= G & v, G =2, ,n =L

o For each subsystem (3¢, ) the manifolds

£+ 1)! i
G a0

j:l,---,n——Z—Z}, (10)

®

s¥5(€0) o= {&j42,0 —

are invariant hypersurfaces. [

Proposition 2.1 Considerthe last generated system (Z)e,,_, of
dimension 3 described by the state model equations

§l,n—3 = V1,n-3,

€a,m—3 = [ty V2in—3, an

: = 2
3 n—3 = m&,n—s U2,n-3.

Letg*, , o = 25t &n=2 4 0. Forall €5 € R® such
that £2,n—3(0) # 0, then the discontinuous controller

Ul,n-3 = —kgsign(flyn_s - £*1,n—3)’ V2,n—3 = 0,

if§1,n-3 # 5*1,71—3'
12)
v2,n-3 = —k1(n = 2}1ésn_s, V1,n—3 =0,

féin-s =6, ;.

ensuresthe asymptotic convergence of the states (€2 n—3, €3,n—3)
to the origin. O



Proof. If we apply the controllers

{ ki >0.

Then the state £, »—3 converges to zero with the rate k; while
&3,n—3 converges to the constant value

€a,n—3(0) — 2 I

V1,n-3 =0,
(13)
v2,n—3 = —ki1(n — 2)! €203,

(n—1)
It is clear that if we maintain vz ,—3 equal to zero and act on
the controller vy, ,_3 such that the state &;,,—3 reach the value

{250 £a.2=2(8 then by switching on the controller (10) both

the states £2,,—3 and €3 »—3 converge exponentially to the ori-
gin with the rate k1. ¢

&1,n~3(0) &2,n—3(0).

After the stabilization of the states (£2,n—3, £3,n—3) at the
origin by the controllers (12), we continue the stabilization pro-
cess for the subsystems ()¢, _,, (X)e,_g»°*
ing at each step on the controller (6). This process shouldend by
switching on the controllers (1), (2).

Remark 2.4 At the end of the stabilization of any system (L)¢,,
the controllers va ¢ might be singular if z, = 0. We could leave
these singularities by applying the controllers vy ¢ = ¢, ¢ > 0,
v2,¢ = 0 for a short period T > 0. These controllers preserve
the invariance of the surfaces&;e(.), 5 =2,---,n—L. e

3. FILTERING THE MEASUREMENTS

In this section we show how we filter the noisy measurement
by a numerical procedure. The details of the latter will not be
reported here. The reader is referred to [12] for more explana-
tions about the algorithm. In the meantime, we restrict ourselves
to give an idea how the procedure should work. Let us suppose
that the measurements are collected at a regular step of time and
let (y1, - -, yn)* be the mooving vector of the noisy data which
corresponds to the equally spaced instants (¢1, 2, - - -, tn). The
algorithm is based on the fact that the random measurement er-
ror ¢ verifies the following conditions

FE [E{] =0,
Eleic]=0, i#}j,
E [egz] =o°.

where ” denotes the variance of noise. Our strategy of filtering
is to consider the following constrained optimization problem

min S [g§"" (At)mr.

i=m

14
subject to the constraint

2
)] <no®,  §eC™n, ta]. (9

n ~

Z {y(t-‘) - y(t
=1 lsy"

The notation §{™ denotes the m-th derivative (in the sense of fi-
nite differences) of the function §j, dyi, 2 = 1, - - -, n are positive
numbers taken as estimates of the standard deviation in y;. At
designates the regular forward difference of ¢, equal to ;41 —
t;. We seek the minimum of the criterion in the space of the B-
spline functions. We replace then §j by the B-spline of order 2m,

ie,
2m
D aibiam(t), (16)
i=1

-, (Z)e,) by switch-
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suchthata = (ai, i =1 ---,2m) € R®*™, andb; 5y is the i-th
positive B-spline function. The solution of this constrained op-
timization problem turns out to be the coefficients of the control
vector a. We give

a=B"1(y-D? Tt u())) an
such that A is the Lagrange parameter which minimizes
ID Tt u(N)”.

[I-]| is the Euclidean norm and T is an (m x 2m) matrix of a
general row

m!

D% = diag(y1 %, -+, 8y, ~2) and B is an n X n matrix such
that B: ; := bj 2m (t:). uisanmx 1 vectorequalto (T D* T* 4
AI)~'Ty. I designates the n x n identity matrix.

(—1)m+j—1 .7 = 11 e, m+ 17 (18)

4. SIMULATION RESULTS

Consider the 4-dimensional driftless system in power form

(T = ug,
T2 = uz,
¥3 = T1 U2,
(Zs) L s (19)
Tg4 = 5217 U2,
al =1,
Uy = va.

with the initial condition zo = (1111 00). We suppose that
the whole state are measured with a random error € of variance
o2 = 0.1. Under the effect of the controller (1), (2) where 8 =
1, the resulting invariant surfaces are

s1(z)

32(z)

[ 1.7:
3= 5 X172
2 1

.2
T4 — =1 IT2.
6

As we have mentioned in section 2, the system (X)), takes the
following form

1,1 =v1,1,
£, =%v, (20
€31 = éﬁl,l v2,1.

For all 7o such that s1 (o) # 0, let z* = %J{—%:l ol # 0, then the
controllers
uy = —kz sign(z; — ¥); v2,1 =0,

ifzy # z*; and k2 > 0,

U = -—-2’671 Sl(z)/:z:l; U = 0,

ifz, = .’L‘*,
< . @n
up = ft‘ —2uy(7) = 421 () d7 + ua(ts)

if s1(w) = s2(x) = 0,

uz = fti —2uz(7) — 4z2(7) dr + uz(ts)
{ if 1 (z) = s2(x) = 0.




stabilize the sytem (Z4) at the origin. ¢, is the first instant where
s1(ts) = s2(ts) = 0. ui(ts) and u;(t,) have to satisfy the
condition .

5. CONCLUSIONS

ui(ts) = —z1(ts),
uz(ts) = —z2(ts):

In this paper we have presented another methodology of design
of discontinuous stabilizing controllers for n—dimensional drift-
less systems in power form. Our control strategy was based on
the construction of invariant manifolds obtained by the integra-
tion of the system equation with respect to dynamic controllers.
The generalization of such a control method can also be applied
to n—dimensional driftless system of any form.

6. REFERENCES

[1] A. Astolfi, 1994, “On the control of nonholmonic sys-

tems”. In proceedings of the 33rd IEEE CDC, 3481-
3486.
[2] A. Bloch and S. Drakunov, 1994, “Stabiliza-

tion of nonholmonic system via sliding mode”.
In proceedings of the 33rd IEEE CDC, 2961-2963.

A. M. Bloch and N. H. McClamroch, 1989, ‘“Control
of mechanical syetms with classical nonholnomic con-

31

straints”.  In proceedings of the 28th IEEE CDC, 201-
205.
[4] A. M. Bloch, M. Reyhanoglu, and N. H. McClamroch,

1992, “Control and stabilization of nonholonomic dy-
namic systems”. IEEE trans. on Auto. Contr,, 37, 11,
1746-1757.

[S] R. W. Brockett, 1983, “Asymptotic stability
and feedback stabilization™. In R. W. Brock-
ett, R. S. Millman and H. J. Sussman, -editors,
(Differential Geometric Control theory) , 181-191,

Birkhauser.

J.-M. Coron, 1992, ”Global asymptotic stabi-
lization for controllable systems without drift”.
Mathematics of Control Signals and Systems, 5, 295-
312.

C. C. de Wit, 1991, “Exponential stabilization
of mobile robots with nonholmonic. constraints”.
In proceedings of the 30th IEEE CDC, 692-697, Decem-
ber.

C. C. de Wit, 1997, “Invariant manifolds: a tool for stabi-
lization”. In the procedings of the International Workshop
on Modelling and Control of Mechanical Systems, 1,
253-275.

C.C.de WitandO. J. S¢rdalen, 1992, “Examples of peice-
wise smooth stabilization of driftless nl systems with less
inputs than states”. IFAC (NOLCOS), 26-30.

M. Fliess, J. Levine, P. Martin, and P. Rouchon, 1993, “De-
sign of trajectory stabilizing feedback for driftless flat sys-
tems”. In the procedings of the 3rd ECC, 1882-1887.

S. Ibrir, 1997, “Numerical observer controller for the sta-
bilization of a nonminimum phase mechanical system”. In
proceedings of the International Workshop on Modelling
and Control of Mechanical Systems , 2. Imperial college,
London.

f6]

(71

(8]

191

{10]

(1]

1442

(15}

[12] S.Ibrir 1998, “A numerical algorithm for filtering and state
observation”. accepted for publication in proceedings of
IEE UKACC, England.

[13] Z.-P. Jiang and H. Nijmeijer, 1997, “Backstepping-
based tracking control of nonholonomic chained systems”.
In proceedings (CDROM) of the 4th ECC, Brussels.

[14] P. Martin and P. Rouchon, 1994, ”Any (control-
lable) driftless system with 3 inputs and 5 states is flat”.
In proceedings of the 33rd IEEE CDC, 4038—4042, De-
cember.

P. Morin, J.-B. Pomet, and C. Samson, 1996, “Design of
homogenous time-varing stabilizing control laws for drift-
less controllable systems via oscillatory approximation of
lie brackets in closed-loop”. Rapport de Recherche N° :
3077, INRIA Sophia Antipolis, December.

P. Morin and C. Samson, 1994, “Timeraring feed-
back stabilization of the attitude of a rigid spacecraft with

[16]

two controls”. Rapport de Recherche N° 2275 ,
INRIA Sophia Antipolis.
[17] R. Mumay and S. S. Sastry, 1993, “Nonhol-

monic motion palnning: Steering using sinusoids”.
IEEE Trans. on Auto. Control, 38, 700-716.

[18] J.-B. Pomet, 1992, “Explicit design of time-varing sta-
bilization control laws for a class of controllable systems

without drift”. Systems & Control Letters, 18, 2, 147-

158.
[19] C. Samson, 1992, “Velocity and torque
feedback control of a nonholonomic cart”.

advanced robot control, Springer Verlag.

A. R. Teel, R. M. Murray, and G. Walsh, 1992, “Non-
holnomic control systems: From steering to stabilization
with sinusoids”. In proceedings of the IEEE CDC, 1603—
1609.

[20]

[21] P.Tsiotras, 1997, “Invariant manifold techniques for con-
trol of underactuated mechanical systems”. In the pro-
cedings of the International Workshop on Modelling and

Control of Mechanical Systems, 1, 277-292.
P. Tsiotras and J. M. Longuski, 1994, “Spin-axis sta-

bilization of symmetric spacecraft with two torques”.
Systems & Control Letters, 23, 395402, December.

[22]




1.5 ]
1 -
x_1
0.5 .
0 S
_0_5 L 1 1 1 1 1 1
0 2 8 10 12 14 16 18 20
Time [S]
Figure 2: The states x1, 9, 3, and z4.
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Figure 3. The controllers 4y and us.
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