Robust State Estimation of Linear Neutral-Type Delay Systems: A
Convex Optimization Setting

Salim Ibrir*
Concordia University
Department of Mechanical and Industrial
Engineering
1515 Sainte Catherine West, Montreal,
H3G 1M8, Canada

sibrir@encs.concordia.ca

Abstract—This paper is concerned with the problem of ro-
bust observer design for linear systems with neutral-type time-
delays. New sulfficient delay-independent conditions are given to
solve the observation issue under noisy output measurements.
Stated as linear matrix inequalities conditions, these sufficient
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Subsequently, the problem of robustness against measure-
ment errors is tackled. To deal with noisy measurements, the
Luenberger observer is transformed into an integral observer
that uses the integral path of the system and the observer

conditions enable the determination of the observer gains that Outputs. This observer does not use the proportional output
guarantee both asymptotic convergence of the observer in injection term as classical proportional integral observers do.

case of noiseless measurements and robust filtering in case For this reason, noise cannot be amplified even for high
of presence of measurements errors. The proposed linear 5,65 of observer gains. In our design, although the delay is
matrix inequality conditions are derived without any major : .
approximation or assumption on the neutral type time-delay assumed.to be known, the computation of the observer gain
system which make the observer design straightforward and i totally independent from the amount of the system delay.
less conservative. Throughout this papef}- || stands for the usual Euclidean

Index Terms—Keywords: Neutral-type delay systems; Ob- norm. The notationA > 0 (respectivelyA < 0) means
servers; Optimal filtering; Linear Matrix Inequalities (LMIs). that the matrix4 is positive definite (respectively negative

definite). We denote byl the matrix transpose afl. We

note by and 0 the identity matrix, and the null matrix of
appropriate dimensions, respectively’ s used to notify an
yelement which is induced by transposition.

II. OBSERVER DESIGN
Consider the neutral-type delay system

. INTRODUCTION

The stability and the stabilizability of neutral-type dela
systems have received a revival of interest during the last
decade, see for example [1], [2], [3], [4] and the references
therein. Such systems appear in many practical engineering
domains as distributed networks containing lossless transmisi(t) — D @(t — h) = Ax(t) + Aqx(t — h) + Bu(t),
sion lines, chemical engineering reactor applications, shig/(t) = Cz(t) + D1&(t),
stabilization and VLSI systems [5], [6], [7]. Even thoughwhere z(t) € R" is the state vectoru(t) € R™ is the
considerable research efforts have been undertaken on V‘Wlif)ut vector, andy(t) € IR” is the system outputD ¢
ous aspects of dynamical systems with time delays [8], [9 nxn A e R, A, € R™", B € RV, C € RPX™,

the observation issue of systems with neutral-type delays hﬁﬁd D, € RP*? are constant matrices aridis a constant
received a little attention. The available results on fllterlnﬁilay that appears in both the derivative and the delay state

1)

alnd q?sgryatlocr; <I)f nzural tléne delzyjylstemzcan bde broadlytrices. We assume théD|| < 1 and £(t) € IR is a
classified into delay dependent and delay independent teGly, ), nded uncertainty that describes usually the output

nigues, see for instance [10]. Despite the fact that delar%easurement errors. We assume thatC) is an observable
dependent observer design is considered less conservati

the delay independent techniques remain preferable for thgi%r' The initial condition of system (1) is given by
robustness and highly satisfactory performances. x(to +0) = p(0), VO € [—h, 0].
In this paper the problem of observer design for neutra
type delay systems is addressed. In case of noiseless m
surements, the proposed observer is merely a Luenber &
observer having a classical proportional output injection .
term. For this case, we give sufficient linear matrix inequality #(t) — D (¢t —h) = A&(t) + Aqg&(t — h) + Bu(t)
condition that guarantees the existence of the observer gain. + PY (C#(t) — y(t)),

whereP € R™*" is a symmetric and positive definite matrix
andY ¢ IR™*? is a real arbitrary matrix to be determined

)

LThe objective is to design an asymptotic observer for system
“by settings () = 0. For this purpose, we set the dynamics
the observer as

®3)
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later. Lete(t) = 2(t) — x(t) be the observation error. Thenwhere., 1(P,Y, Q) = ATP+PA+YC+CTYT +Q

we have

é(t) — Dé(t—h) = (A+P'YCO)e(t) + Age(t — h). (4)

Consider the Lyapunov-Krasovskii functional candidate
V(e(t) = (e(t) — De(t — h)) " P(e(t) — De(t — h))

+ /tth e (1)Q,e(r) dr, ®)

where P € R™*" and@Q € IR™*" are symmetric and pos-

itive definite matrices. Then the time derivative Bie(t))
along the trajectories of (4) is given by

') (ATP+PA+YC+CTY T +Q)e(t)

+e'(t—h)(-Q—D"PA;— AjPD)e(t — h)
—e'®)(CTYT + ATP) De(t — h) (6)
—e'(t—h)D" (YC + PA)e(t)

+e'(t—h)A] Pe(t) +e' (t)PAge(t — h).

If we suppose thatQ+D T PAs+A] PD > 0, thenV (e(t))
can be rewritten as

V=e'(t) [ATP+ PA+YC+CTYT +Q
1 —1
+PAd<2Q+DTPAd+AdTPD> AdTP}e(t)
/1 -T
- (262 +DTPA;+ AdTPD> e(t —h) — Aj Pe(t)

-1
X (;Q +D"PA; + A}PD)

X @Q +D"PA; + A}PD) e(t —h) — A Pe(t)
—e'(t)(CTYT + ATP) De(t — h)
—e'(t—h)D' (YC + PA)e(t) —e (t — h)%e(t —h).
@)
This gives
V<el(t) [ATP+PA+YC+CTYT +Q

-1
+ PA (;Q +DTPAy+ A;PD> A;P] e(t)
—e"®)(CTYT + ATP) De(t — h)

—e'(t—h)DT (YC + PA)e(t) —e' (t - h)%e(t —h)

- [ s }

L1(PY,Q) —(CTYT+ATP)D
[ —DT (YC + PA) —%

g [ s } ’
®)

+PA(LQ+ DTPA;+ A]PD) AT P. ThenV (e(t)) <
0 if

Z1(PY,Q) —(CTYT+ATP)D
DT (YC + PA) —% <0 O

By the Schur complement lemma, the blogk ; (P, Y, Q) <
0 if

ATP+PA+YCH+CTYT +Q

AjP 10

PA, <0 (10)

-9 - DTPA;—A]PD ’

Then we can write thal’(e(t)) < 0 if the following linear
matrix inequality holds

V11(PY,Q) PAy
—% —D"PA;— A} PD
* *
—(CTYT+ATP)D (1)
OQ <0,
2

where#11(P,Y,Q) = ATP+ PA+YC+CTY T +Q.
Theorem 1:Consider system (1) witl§(¢t) = 0. Then if
there exist two symmetric and positive definite matrices
R™"™, @ € R™" and a matrixY € IR"*? such that the
linear matrix inequality (11) holds. Then the states of system
(3) converge asymptotically to the states of system (1) when
time elapses.
Theorem 1 gives a constructive method for designing the
observer gainKk = P~'Y via the solution of the linear
matrix inequality (11) which is numerically tractable by
any commercial software. Furthermore, the amount of delay
does not appear in the LMI (11) which makes the observer
valid for different values of the time-delay. However, the
knowledge ofh remains necessary to build the dynamics
of the asymptotic observer. Even though the amount of
delay is not explicitly present in (11), the delay may affect
considerably the performance of the observer. Remark that
the condition¥ + DTPA,; + A]PD > 0 that we have
imposed in the previous development appears in the diagonal
of the matrix of inequality (11). For this reason, it is
sufficient to fulfil condition (11) to obtain the observer gain.
It is important to outline that the linear matrix inequality
(11) is not conservative since it is not issued from any
approximation of the terms that appear in (7).

I1l. ROBUST INTEGRAL OBSERVER DESIGN

Usually, the design of high-gain observers leads to noise
amplification, and hence, the estimates cannot be filtered
without a complete redesign of the observer gain. To clarify
this fact, let us consider system (1) subject to the output



uncertaintyé(¢). Then if we use observer (3), the dynamicsof the observer and the system outputs. It remains now to deal
of the observation error is given by with the calculation of the observer gain so as to ensure the
N Tva(e By 1 B asymptotic stability of the observation error wheft) = 0
é(t) — De(t —h) = (éjp YC)e(t) + Aae(t = ) (12) and satisfy the following performance index for all initial

— PTY Di£(1). conditionse(s), —h < s <0 andVvt >0
It is clear that if the stability of the observation error given
by (12) requires a high-gain vectdt = P~'Y, then the
value of the uncertainty in (12) shall be amplified. For this .,
reason, the trade off between stability and filtering remains e (s)C'Ce(s) — 72§T(S)§(s)} ds < 7(0); (18)
unsolvable. Our aim is to decouple the effect of noise from 0
the observer gain. For this purpose, we shall feed back the
ooserer il e It tera ofthe Sytem and he bselpre () = (e0) = De(=h)TP(e0) - P 4
introduced in [11] for both single output linear and nonlineal —n ¢ | (1)Qe(r)d7, and P, Q are symmetric and positive

. finite matrices of appropriate dimensions. It is obvious that
systems. The reader is also referred to the references [1 f bprop

. . the initial conditionse(t) = 0 for —h < t < 0, then the
13], [14] to see other types of proportional and integra ; : . S
Lbs]erE/er]s Let us considgfthe augmgnted system 9" performance index (18)is equivalent f&'e(1)]| < y[€(*)]
’ Setting the performance index in form (18) is realistic since
(t) - Da(t —h) = Ax(t) + Aga(t — h) + Bu(t), (13) the initial condition of the system is generally unknown in
N(t) = Cx(t) + D:1£(2), such observation problems. We summarize the result of this
wherex(totJr 0) = 0(0), ¥0 € [~h, 0], n(to) = 0, and section in the following statement.

) Theorem 2:The observer error dynamics (17) is asymp-
n(t) = / Cu(s) + Di&(s) ds is the new output of the tqtically stable foré(t) = 0 and verifies condition (18) for

to . ; " .. .
T t 0 if there exist two positive and definite matrices
neutral delay system. Let(t) = [ n(t) =(t) | be the % )€¢R(1’L+p)><(n+p) 0 e ]R?"”)X("*p) o matrix ¥ e

new state vector and define X .
R("+P)*P and a positive constant such that the following

i_|lo ¢ 0 LMI holds

0 A | 0 )
=] ot | o= [ ! ] W) [, PA (@Y 4+ ATP)D
e : « @ pTpA, ijpD 0
B = i B :| 9 Ad = |: 0 Ad :| 9 * * _%

*
*

as the new system matrices of dimensi¢ns-p) x (n+p),

(n+p)x (n+p), (n+p) xp, (n+p)xp, (n+p) xm, —PDy
(n + p) x (n + p), respectively. Consider(t) as the new ~T0~~ <0,
output vector of system (13). Then, we write D P;Dl
~ ~ ~ ~ el
2(t) — Dz(t — h) = Az(t) + Aqz(t — h) + Bu(t) (19)
+ Di&(b), (15)
y(t) = Cz(2). where.#,, = ATP+PA+YC+CTYT+CTC+Q.

By taking the integral of the output as the new output, wegof. Let ¥ (e(t)) = (e(t) — De(t — b)) T P(e(t) — De(t —
translate the uncertainty(¢) to the state dynamics, see (15).
Hence, any high-gain observer for system (15) will act as 4)) / } T(7)Qe(r) d7. Then, we have
filter because noise is viewed now as a system uncertainty. -
The dynamics of the observer is readily constructed as

i(t) — DE(t — h) = A2(t) + Agz(t — h) + Bu(t)

e (s)C T Ce(s 72§T(3)§(8)} ds—%(0)
T (16)
+ P (Cat) - )

[}

IN

and hence, the dynamics of the observation ewr@) =
Z(t) — z(t) becomes

R
/t T (s)CT Ce(s 725(5)5(5)} ds+ ¥ (e(t)
)C

0
—¥(0)
JRGE
(17)
Even though the new observer dynamics (16) is in form (4), o
the injection term of (16) is an integral path of the differencé&Jnder the assumption thgQ + D" PA,+ A PD > 0, we

é(t)—Dé(t—h) = (Z + 13—1176) e(t)+ Age(t—h)—Dy&(1). CTCe(s) =y (s)E(s) + 7V (e(s))} ds.



have IV. ILLUSTRATIVE EXAMPLE

()T Celt) — 2T (W) + 7 (e(0)
= e (1)CT Ce(t) — €T (1)E(L)
+eT()[ATP+ PA+YC+CTYT +Q + PA,

The dynamics of a lossless transmission line is modelled
by the following neutral-type delay system [6]

< (36+D7PA, +ATPD) ATPe(t

0 ay 0 O
P L T
[(2Q+DTPAd+AIPD)_el(th)AIPe(t)} w0 - | o 8 8 8 Bt h)
« (3@ +D7PA,+ AJPD) 0 00
1% o o o — 0 (&7)) 0
[(7Q+DTPAd+A}PD)e(t—h) fAdTPe(t)} 0~ 0 -
’ |- 0 o o |"@
— eT(t) (6’T3~/T + g—rﬁ)ﬁe(t —h) 0 as 0 0
—eT(t=h)DT(VC + PA)e(t) [0 % 8 8
= + o z(t — h) 22)
—eT(t—h)ge(t—h) _ _02 o a20a4 8 8
— &7 (t)D] Pe(t) + ¢ (t)D{ PDe(t — h) [0 b
—eT(O)PDy&(t) + €' (t — h)DT PDy£(t) L] 00 [ s (t) ]
~ o~ ~ ~ ~ ~ ~ ~ o~ o~ O{gﬂo 0 UQ(t) ’
La(P,Y,Q+CTC —(CTYT+ATP)D 0 0
<¢'(t) | —-DT(YC + PA) -q "0 0 1 0
~-D{P D{ PD vO=10 0 0 1 }w(t)
D, [di 0
DTPD, | ¢, 10 4 } §®)
,72] B
(20)
where the system parameters are defined cas =
. Ve/(coRoy/c+coVL), ar = e/ (erRiv/e+ VL), az =
where ((t) = [e(t) et—h) &) ], and (Rove+vL)/(Love), az = (Ri/er+VL)/(Live), as =
La1(PY,Q) = ATP + PA+YC + CTYT + (Rov/e—V'L)/(Ro/e+VL), a5 = (Riy/c—VL)/(Riy/c+

VL), us(t) = u1(t), h = V¢ L. The numerical values of
. the system parameters aré; = 0.2 [H], L = 1 [m],
i h = 0.1414 [S], ¢ = 0.02 [S2/m], Lo = 0.1 [H], Bo = 0.01,

dl = 0.3, dg = 0.1, c1 = 0.1 [F], Ro =95 [Omhs],

Ry = 10 [Omhs]. To implement the robust time-delay
Z1(PY,Q)+CTC —(CTYT+ATP)D observer (16) we shall delay the observer states by a constant
_DT(YC + PA) Q delay h and qonsider the termd 2(t — h). and Dé_(t —h) _
_pTp 5%}55 as feedback inputs to observer (16). This technique permits
! ! (21) us to implement the observer dynamics as it appears without

~ ~ ~ ~ ~ o~ o~ ~ e~ Lo o
O + PAd(;QJrDTPAdJrA;PDCP AIP. Then the
optimality condition (18) is satisfie

—PD, augmenting the order of the states. In Fig. 1 the noisy output
DTPD, | <0. of system (22) are reported when a periodic control input
—2I u1(t) = 5 sin(10¢) [V] is applied to system (22). The initial
values of system (22) arér;)i1<i<4(t) = —1 for ¢ < h.

In Figs. 2 and 3, the behavior of the estimated states along

By applying the Schur complement result, condition (211;/1Ith th? relalt'states of systleml(zti) tatrﬁ rel;))resente(:. tFrom
is equivalent to (19). It is always interesting to find the ese simulalions, we see clearly that the observer states are

smallest value ofy that verifies inequality (19). In this case,qu'te Tsentshltlve o a band-!{lmltTer(]j wh|te_ noise thatl_tcc()jmesf
the linear optimization problem (19) must be modified tgOTUPling the: measurements. the maximum amphtude o
min_ 4 s.t. (19) noise is set to 10. The simulations are done after solving the

V.0 filtering problem (19) with respect t®, @, Y and~. The



solution is

42567 0 04138 0
0 72728 0 —0.8400
b | 04138 0 25476 0
0 —08400 0 27913
02236 0 0.0363 0
0 —0.3903 0  —0.0538
02236 0
0 —0.3003
0.0363 0
0 —0.0538 | g
0.0195 0
0 0.0539 c
2.5830 0 —0.1405 0 £
0 2.5769 0 0.1190
| —o1405 0 6.0484 0
@= 0 0.1190 0 6.2529
00070 0 0.1108 0
0 00049 0  —0.0032
00070 0
0 —0.0049
0.1108 0
0 —0.0032 |°
0.2461 0
0 0.3951
74319 0
0.0001  —6.2441
182621 0.0002
Y = 5 oot | v =0.8803
38303 0
0 —6.8959

V. CONCLUSION

The problem of robust observer design for a class of sys-
tems with neutral-type time delays is addressed. It was showng

05 1 15 2 25 3 35
Timein [S]

Fig. 1. The Noisy outputs

that the proposed linear matrix inequalities conditions are not £

dependent upon certain class of linear neutral delay systems?
and enjoy the property to be less restrictive. Accordingly,
extension of this work to neutral systems with multiple time-
delays is also possible. We conjecture that dual results car
be obtained in case of stabilization by static feedback and
more optimality conditions can be imposed. This point will
be the subject of future investigation.
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