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Abstract— This paper is concerned with the problem of ro-
bust observer design for linear systems with neutral-type time-
delays. New sufficient delay-independent conditions are given to
solve the observation issue under noisy output measurements.
Stated as linear matrix inequalities conditions, these sufficient
conditions enable the determination of the observer gains that
guarantee both asymptotic convergence of the observer in
case of noiseless measurements and robust filtering in case
of presence of measurements errors. The proposed linear
matrix inequality conditions are derived without any major
approximation or assumption on the neutral type time-delay
system which make the observer design straightforward and
less conservative.

Index Terms— Keywords: Neutral-type delay systems; Ob-
servers; Optimal filtering; Linear Matrix Inequalities (LMIs).

I. INTRODUCTION

The stability and the stabilizability of neutral-type delay
systems have received a revival of interest during the last
decade, see for example [1], [2], [3], [4] and the references
therein. Such systems appear in many practical engineering
domains as distributed networks containing lossless transmis-
sion lines, chemical engineering reactor applications, ship
stabilization and VLSI systems [5], [6], [7]. Even though
considerable research efforts have been undertaken on vari-
ous aspects of dynamical systems with time delays [8], [9],
the observation issue of systems with neutral-type delays has
received a little attention. The available results on filtering
and observation of neural time delay systems can be broadly
classified into delay dependent and delay independent tech-
niques, see for instance [10]. Despite the fact that delay
dependent observer design is considered less conservative,
the delay independent techniques remain preferable for their
robustness and highly satisfactory performances.

In this paper the problem of observer design for neutral-
type delay systems is addressed. In case of noiseless mea-
surements, the proposed observer is merely a Luenberger
observer having a classical proportional output injection
term. For this case, we give sufficient linear matrix inequality
condition that guarantees the existence of the observer gain.
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Subsequently, the problem of robustness against measure-
ment errors is tackled. To deal with noisy measurements, the
Luenberger observer is transformed into an integral observer
that uses the integral path of the system and the observer
outputs. This observer does not use the proportional output
injection term as classical proportional integral observers do.
For this reason, noise cannot be amplified even for high
values of observer gains. In our design, although the delay is
assumed to be known, the computation of the observer gain
is totally independent from the amount of the system delay.

Throughout this paper,‖ · ‖ stands for the usual Euclidean
norm. The notationA > 0 (respectivelyA < 0) means
that the matrixA is positive definite (respectively negative
definite). We denote byA> the matrix transpose ofA. We
note byI and0 the identity matrix, and the null matrix of
appropriate dimensions, respectively. ”?” is used to notify an
element which is induced by transposition.

II. OBSERVER DESIGN

Consider the neutral-type delay system

ẋ(t)−D ẋ(t− h) = Ax(t) + Ad x(t− h) + Bu(t),
y(t) = C x(t) + D1ξ(t),

(1)

where x(t) ∈ IRn is the state vector,u(t) ∈ IRm is the
input vector, andy(t) ∈ IRp is the system output.D ∈
IRn×n, A ∈ IRn×n, Ad ∈ IRn×n, B ∈ IRn×m, C ∈ IRp×n,
and D1 ∈ IRp×p are constant matrices andh is a constant
delay that appears in both the derivative and the delay state
matrices. We assume that‖D‖ ≤ 1 and ξ(t) ∈ IRp is a
norm-bounded uncertainty that describes usually the output
measurement errors. We assume that(A, C) is an observable
pair. The initial condition of system (1) is given by

x(t0 + θ) = ϕ(θ), ∀θ ∈ [−h, 0] . (2)

The objective is to design an asymptotic observer for system
(1) by settingξ(t) ≡ 0. For this purpose, we set the dynamics
of the observer as

˙̂x(t)−D ˙̂x(t− h) = A x̂(t) + Ad x̂(t− h) + Bu(t)

+ P−1Y (Cx̂(t)− y(t)) ,
(3)

whereP ∈ IRn×n is a symmetric and positive definite matrix
and Y ∈ IRn×p is a real arbitrary matrix to be determined



later. Lete(t) = x̂(t) − x(t) be the observation error. Then
we have

ė(t)−Dė(t− h) =
(
A + P−1Y C

)
e(t) + Ad e(t− h). (4)

Consider the Lyapunov-Krasovskii functional candidate

V (e(t)) = (e(t)−De(t− h))>P (e(t)−De(t− h))

+
∫ t

t−h

e>(τ)Q, e(τ) d τ,
(5)

whereP ∈ IRn×n and Q ∈ IRn×n are symmetric and pos-
itive definite matrices. Then the time derivative ofV (e(t))
along the trajectories of (4) is given by

e>(t)
(
A>P + PA + Y C + C>Y > + Q

)
e(t)

+ e>(t− h)
(−Q−D>PAd −A>d PD

)
e(t− h)

− e>(t)
(
C>Y > + A>P

)
De(t− h)

− e>(t− h)D> (Y C + PA) e(t)

+ e>(t− h)A>d Pe(t) + e>(t)PAde(t− h).

(6)

If we suppose that12Q+D>PAd+A>d PD > 0, thenV̇ (e(t))
can be rewritten as

V̇ = e>(t)
[
A>P + PA + Y C + C>Y > + Q

+ PAd

(
1
2
Q + D>PAd + A>d PD

)−1

A>d P
]
e(t)

−
[(

1
2
Q + D>PAd + A>d PD

)
e(t− h)−A>d Pe(t)

]>

×
(

1
2
Q + D>PAd + A>d PD

)−1

×
[(

1
2
Q + D>PAd + A>d PD

)
e(t− h)−A>d Pe(t)

]

− e>(t)
(
C>Y > + A>P

)
De(t− h)

− e>(t− h)D′ (Y C + PA) e(t)− e>(t− h)
Q

2
e(t− h).

(7)

This gives

V̇ ≤ e>(t)
[
A>P + PA + Y C + C>Y > + Q

+ PAd

(
1
2
Q + D>PAd + A>d PD

)−1

A>d P
]
e(t)

− e>(t)
(
C>Y > + A>P

)
De(t− h)

− e>(t− h)D> (Y C + PA) e(t)− e>(t− h)
Q

2
e(t− h)

=
[

e(t)
e(t− h)

]>
×

[
L1,1(P, Y, Q) − (

C>Y > + A>P
)
D

−D> (Y C + PA) −Q

2

]

×
[

e(t)
e(t− h)

]
,

(8)

whereL1,1(P, Y, Q) = A>P + PA + Y C + C>Y > + Q

+PAd

(
1
2Q + D>PAd + A>d PD

)−1
A>d P . ThenV̇ (e(t)) <

0 if
[

L1,1(P, Y, Q) − (
C>Y > + A>P

)
D

−D> (Y C + PA) −Q

2

]
< 0. (9)

By the Schur complement lemma, the blockL1,1(P, Y, Q) <
0 if

[
A>P + PA + Y C + C>Y > + Q

A>d P

PAd

−Q
2 −D>PAd −A>d PD

]
< 0,

(10)

Then we can write thaṫV (e(t)) < 0 if the following linear
matrix inequality holds




W1,1(P, Y, Q) PAd

? −Q

2
−D>PAd −A>d PD

? ?

−(C>Y > + A>P )D
0

−Q

2


 < 0,

(11)

whereW1,1(P, Y, Q) = A>P + PA + Y C + C>Y > + Q.
Theorem 1:Consider system (1) withξ(t) ≡ 0. Then if

there exist two symmetric and positive definite matricesP ∈
IRn×n, Q ∈ IRn×n and a matrixY ∈ IRn×p such that the
linear matrix inequality (11) holds. Then the states of system
(3) converge asymptotically to the states of system (1) when
time elapses.
Theorem 1 gives a constructive method for designing the
observer gainK = P−1Y via the solution of the linear
matrix inequality (11) which is numerically tractable by
any commercial software. Furthermore, the amount of delay
does not appear in the LMI (11) which makes the observer
valid for different values of the time-delayh. However, the
knowledge ofh remains necessary to build the dynamics
of the asymptotic observer. Even though the amount of
delay is not explicitly present in (11), the delay may affect
considerably the performance of the observer. Remark that
the condition Q

2 + D>PAd + A>d PD > 0 that we have
imposed in the previous development appears in the diagonal
of the matrix of inequality (11). For this reason, it is
sufficient to fulfil condition (11) to obtain the observer gain.
It is important to outline that the linear matrix inequality
(11) is not conservative since it is not issued from any
approximation of the terms that appear in (7).

III. ROBUST INTEGRAL OBSERVER DESIGN

Usually, the design of high-gain observers leads to noise
amplification, and hence, the estimates cannot be filtered
without a complete redesign of the observer gain. To clarify
this fact, let us consider system (1) subject to the output



uncertaintyξ(t). Then if we use observer (3), the dynamics
of the observation error is given by

ė(t)−Dė(t− h) =
(
A + P−1Y C

)
e(t) + Ade(t− h)

− P−1Y D1ξ(t).
(12)

It is clear that if the stability of the observation error given
by (12) requires a high-gain vectorK = P−1Y , then the
value of the uncertainty in (12) shall be amplified. For this
reason, the trade off between stability and filtering remains
unsolvable. Our aim is to decouple the effect of noise from
the observer gain. For this purpose, we shall feed back the
observer with the first integral of the system and the observer
outputs. The notion of this kind of observers has been
introduced in [11] for both single output linear and nonlinear
systems. The reader is also referred to the references [12],
[13], [14] to see other types of proportional and integral
observers. Let us consider the augmented system

ẋ(t)−D ẋ(t− h) = Ax(t) + Ad x(t− h) + Bu(t),
η̇(t) = C x(t) + D1ξ(t),

(13)

where x(t0 + θ) = ϕ(θ), ∀θ ∈ [−h, 0], η(t0) = 0, and

η(t) =
∫ t

t0

Cx(s) + D1ξ(s) d s is the new output of the

neutral delay system. Letz(t) =
[

η(t) x(t)
]>

be the
new state vector and define

Ã =
[

0 C
0 A

]
, D̃ =

[
0 0
0 D

]
,

D̃1 =
[

D1

0

]
, C̃ ′ =

[
I
0

]
,

B̃ =
[

0
B

]
, Ãd =

[
0 0
0 Ad

]
,

(14)

as the new system matrices of dimensions(n+p)× (n+p),
(n + p)× (n + p), (n + p)× p, (n + p)× p, (n + p)×m,
(n + p) × (n + p), respectively. Considerη(t) as the new
output vector of system (13). Then, we write

ż(t)− D̃ż(t− h) = Ãz(t) + Ãdz(t− h) + B̃u(t)

+ D̃1ξ(t),

ỹ(t) = C̃z(t).

(15)

By taking the integral of the output as the new output, we
translate the uncertaintyξ(t) to the state dynamics, see (15).
Hence, any high-gain observer for system (15) will act as a
filter because noise is viewed now as a system uncertainty.

The dynamics of the observer is readily constructed as

˙̂z(t)− D̃ ˙̂z(t− h) = Ãẑ(t) + Ãdẑ(t− h) + B̃u(t)

+ P̃−1Ỹ
(
C̃ẑ(t)− ỹ(t)

)
,

(16)

and hence, the dynamics of the observation errore(t) =
ẑ(t)− z(t) becomes

ė(t)−D̃ė(t−h) =
(
Ã + P̃−1Ỹ C̃

)
e(t)+Ãde(t−h)−D̃1ξ(t).

(17)
Even though the new observer dynamics (16) is in form (4),
the injection term of (16) is an integral path of the difference

of the observer and the system outputs. It remains now to deal
with the calculation of the observer gain so as to ensure the
asymptotic stability of the observation error whenξ(t) ≡ 0
and satisfy the following performance index for all initial
conditionse(s), −h ≤ s ≤ 0 and∀t ≥ 0

∫ t

0

{
e>(s)C̃ ′C̃e(s)− γ2ξ>(s)ξ(s)

}
d s ≤ V (0); (18)

where V (0) = (e(0) − D̃e(−h))>P̃ (e(0) − D̃e(−h)) +∫ 0

−h
e>(τ)Q̃e(τ)d τ , and P̃ , Q̃ are symmetric and positive

definite matrices of appropriate dimensions. It is obvious that
if the initial conditionse(t) = 0 for −h ≤ t ≤ 0, then the
performance index (18)is equivalent to‖C̃e(t)‖ ≤ γ‖ξ(t)‖.
Setting the performance index in form (18) is realistic since
the initial condition of the system is generally unknown in
such observation problems. We summarize the result of this
section in the following statement.

Theorem 2:The observer error dynamics (17) is asymp-
totically stable forξ(t) ≡ 0 and verifies condition (18) for
ξ(t) 6≡ 0 if there exist two positive and definite matrices
P̃ ∈ IR(n+p)×(n+p), Q̃ ∈ IR(n+p)×(n+p), a matrix Ỹ ∈
IR(n+p)×p, and a positive constantγ2 such that the following
LMI holds




M1,1 P̃ Ãd − (C̃>Ỹ > + Ã>P̃ )D̃
? − Q̃

2 − D̃>P̃ Ãd − Ã>d P̃ D̃ 0
? ? − Q̃

2
? ? ?

−P̃ D̃1

0
D̃>P̃ D̃1

−γ2I


 < 0,

(19)

whereM1,1 = Ã>P̃ + P̃ Ã + Ỹ C̃ + C̃>Ỹ > + C̃>C̃ + Q̃.

Proof. Let V (e(t)) = (e(t)− D̃e(t− h))>P̃ (e(t)− D̃e(t−
h)) +

∫ t

t−h

e>(τ)Q̃e(τ) d τ . Then, we have

∫ t

0

{
e>(s)C̃>C̃e(s)− γ2ξ>(s)ξ(s)

}
d s− V (0)

≤
∫ t

0

{
e>(s)C̃>C̃e(s)− γ2ξ>(s)ξ(s)

}
d s + V (e(t))

− V (0)

=
∫ t

0

{
e>(s)C̃>C̃e(s)− γ2ξ>(s)ξ(s) + ˙V (e(s))

}
d s.

Under the assumption that1
2 Q̃+D̃>P̃ Ãd + Ã>d P̃ D̃ > 0, we



have

e>(t)C̃>C̃e(t)− γ2ξ>(t)ξ(t) + ˙V (e(t))

= e>(t)C̃>C̃e(t)− γ2ξ>(t)ξ(t)

+ e>(t)
[
A>P̃ + P̃A + Ỹ C̃ + C̃>Ỹ > + Q̃ + P̃ Ãd

×
(1

2
Q̃ + D̃>P̃ Ãd + Ã>d P̃ D̃

)−1

Ã>d P̃
]
e(t)

−
[(1

2
Q̃ + D̃>P̃ Ãd + Ã>d P̃ D̃

)
e(t− h)− Ã>d P̃ e(t)

]>

×
(1

2
Q̃ + D̃>P̃ Ãd + Ã>d P̃ D̃

)−1

×
[(1

2
Q̃ + D̃>P̃ Ãd + Ã>d P̃ D̃

)
e(t− h)− Ã>d P̃ e(t)

]

− e>(t)
(
C̃>Ỹ > + Ã>P̃

)
D̃e(t− h)

− e>(t− h)D̃>
(
Ỹ C̃ + P̃ Ã

)
e(t)

− e>(t− h)
Q̃

2
e(t− h)

− ξ>(t)D̃>
1 P̃ e(t) + ξ>(t)D̃>

1 P̃ D̃e(t− h)

− e>(t)P̃ D̃1ξ(t) + e>(t− h)D̃>P̃ D̃1ξ(t)

≤ ζ>(t)




L1,1(P̃ , Ỹ , Q̃) + C̃>C̃ −(C̃>Ỹ > + Ã>P̃ )D̃
−D̃>(Ỹ C̃ + P̃ Ã) − Q̃

2

−D̃>
1 P̃ D̃>

1 P̃ D̃

−P̃ D̃1

D̃>P̃ D̃1

−γ2I


 ζ(t),

(20)

where ζ(t) =
[

e(t) e(t− h) ξ(t)
]>

, and
L1,1(P̃ , Ỹ , Q̃) = A>P̃ + P̃A + Ỹ C̃ + C̃>Ỹ > +

Q̃ + P̃ Ãd

(
1
2 Q̃ + D̃>P̃ Ãd + Ã>d P̃ D̃

)−1

Ã>d P̃ . Then the
optimality condition (18) is satisfied if




L1,1(P̃ , Ỹ , Q̃) + C̃>C̃ −(C̃>Ỹ > + Ã>P̃ )D̃
−D̃>(Ỹ C̃ + P̃ Ã) − Q̃

2

−D̃>
1 P̃ D̃>

1 P̃ D̃

−P̃ D̃1

D̃>P̃ D̃1

−γ2I


 < 0.

(21)

By applying the Schur complement result, condition (21)
is equivalent to (19). It is always interesting to find the
smallest value ofγ that verifies inequality (19). In this case,
the linear optimization problem (19) must be modified to
min

P̃ ,Ỹ ,Q̃
γ s.t. (19).

IV. ILLUSTRATIVE EXAMPLE

The dynamics of a lossless transmission line is modelled
by the following neutral-type delay system [6]

ẋ(t)−




0 α4 0 0
α5 0 0 0
0 0 0 0
0 0 0 0


 ẋ(t− h)

=




−α0 0 α0 0
0 −α1 0 −α1

−α2 0 0 0
0 α3 0 0


 x(t)

+




0 α0 0 0
α1 0 0 0
0 α2 α4 0 0

−α3 α5 0 0 0


 x(t− h)

+




0 β0

0 0
α2β0 0

0 0




[
u1(t)
u2(t)

]
,

y(t) =
[

0 0 1 0
0 0 0 1

]
x(t)

+
[

d1 0
0 d2

]
ξ(t)

(22)

where the system parameters are defined asα0 =√
c/(c0R0

√
c + c0

√
L), α1 =

√
c/(c1R1

√
c + c1

√
L), α2 =

(R0
√

c+
√

L)/(L0
√

c), α3 = (R1
√

c1+
√

L)/(L1
√

c), α4 =
(R0

√
c−√L)/(R0

√
c+
√

L), α5 = (R1
√

c−√L)/(R1
√

c+√
L), u2(t) = u̇1(t), h =

√
cL. The numerical values of

the system parameters are:L1 = 0.2 [H], L = 1 [m],
h = 0.1414 [S], c = 0.02 [S2/m], L0 = 0.1 [H], β0 = 0.01,
d1 = 0.3, d2 = 0.1, c1 = 0.1 [F ], R0 = 5 [Omhs],
R1 = 10 [Omhs]. To implement the robust time-delay
observer (16) we shall delay the observer states by a constant
delay h and consider the terms̃Adẑ(t − h) and D̃ ˙̂z(t − h)
as feedback inputs to observer (16). This technique permits
us to implement the observer dynamics as it appears without
augmenting the order of the states. In Fig. 1 the noisy output
of system (22) are reported when a periodic control input
u1(t) = 5 sin(10 t) [V] is applied to system (22). The initial
values of system (22) are(xi)1≤i≤4(t) = −1 for t < h.
In Figs. 2 and 3, the behavior of the estimated states along
with the real states of system (22) are represented. From
these simulations, we see clearly that the observer states are
quite insensitive to a band-limited white noise that comes
corrupting the measurements. The maximum amplitude of
noise is set to 10. The simulations are done after solving the
filtering problem (19) with respect toP , Q, Y and γ. The



solution is

P =




4.2567 0 0.4138 0
0 7.2728 0 −0.8400

0.4138 0 2.5476 0
0 −0.8400 0 2.7913

−0.2236 0 0.0363 0
0 −0.3903 0 −0.0538

−0.2236 0
0 −0.3903

0.0363 0
0 −0.0538

0.0195 0
0 0.0539




,

Q =




2.5839 0 −0.1405 0
0 2.5769 0 0.1190

−0.1405 0 6.0484 0
0 0.1190 0 6.2529

−0.0070 0 0.1108 0
0 −0.0049 0 −0.0932

−0.0070 0
0 −0.0049

0.1108 0
0 −0.0932

0.2461 0
0 0.3951




,

Y =




−7.4319 0
0.0001 −6.2441
−18.2621 0.0002

0 18.4801
−3.8303 0

0 −6.8959




, γ = 0.8803.

V. CONCLUSION

The problem of robust observer design for a class of sys-
tems with neutral-type time delays is addressed. It was shown
that the proposed linear matrix inequalities conditions are not
dependent upon certain class of linear neutral delay systems
and enjoy the property to be less restrictive. Accordingly,
extension of this work to neutral systems with multiple time-
delays is also possible. We conjecture that dual results can
be obtained in case of stabilization by static feedback and
more optimality conditions can be imposed. This point will
be the subject of future investigation.
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