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The premise underlying robust control is to explic-
itly model the mismatch between a nominal model
and the true behavior of the physical system; this
mismatch is accounted for by the plant ”uncertainty”.
The largest advances in the theory of robust control
have for the most part dealt with the question of
analysis: given mathematical descriptions of the
physical system, the system uncertainty, and the
control system, determine whether the closed loop
system performs to specifications for all possible
values of the system uncertainty. If the answer to
this question is positive, it is likely that the control
system will perform to specifications when applied
to the real system being controlled. In this note
we propose a simple robust controller that stabilizes
uncertain aerospace systems with arbitrary type of
bounded uncertainties. The controller design takes
into account the unmodeled input dynamics which
may result from atmospheric perturbations. A new
condition of quadratic stability is derived which makes
easier the implementation of such robust controllers.
An example of control of uncertain missile model is
illustrated to highlight the robustness of the proposed
method.
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introduction
We are never able to guarantee in advance that any

model-based algorithm will work in practice. Irrespec-
tive of how the models used for control are obtained,
they will be imperfect. A way to reduce the risk some-
what is to construct reliable and robust controllers.
The design is then based not only on nominal design
models, but also on specified sets of deviations between
the models and the true systems. Such sets are called
error models, or uncertainty models.

The stabilization and control of uncertain plants is
the first step for the construction of both autonomous
and intelligent systems. The design of such a control
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tion of École de Technologie Supérieure, Montreal, Canada.
E-mail: s−ibrir@gpa.etsmtl.ca
‡Department of Automated Production of École de Tech-
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system is often found challenging because of the in-
sufficient knowledge and unmodeled dynamics of the
system, external disturbance, and the inherent prob-
lem of sensor noise. Hence, the controller is required to
be immune to such operating conditions. While these
theoretical and computational tools for analysis have
been a success by most measures, the corresponding
quest for tools which tackle synthesis for uncertain sys-
tems has fallen short of expectations. The main reason
for this lack of progress is that controller synthesis is
a much harder, and less studied problem. Extensive
research efforts include developing new theoretical and
computational tools for the design of robust and opti-
mal control systems such as H∞ minimization theory,
µ-synthesis theory, Linear matrix inequality theory
and Lyapunov methods based techniques which are
still in progress and have been found to be ideal for
such applications.

Let us mention that Lyapunov based methods have
a great relationship with optimal control theory which
governs strategies for maximizing a performance mea-
sure or minimizing a cost function as the state of a
dynamic system evolves. If the information that the
control system must use is uncertain or if the dy-
namic system is forced by random disturbances, it
may not be possible to optimize this criterion with
certainty. The best one can hope to do is to maximize
or minimize the expected value of the criterion, given
assumptions about the statistics of the uncertain fac-
tors. This leads, of course, to the concept of stochastic
optimal control that recognizes the random behavior
of the system and that attempts to optimize response
or stability on the average rather than with assured
precision.

In this paper we provide a new sample control
methodology for the stabilization of uncertain linear
systems for which matching conditions are not satis-
fied. The unmodeled dynamics are described only in
terms of bounds on their possible sizes. The proposed
controller realizes the quadratic stability of the un-
certain system with less computational tools and less
restrictive conditions on the uncertain parts. The con-
troller gain is issued from the solution of a parameter-
dependent Lyapunov-like matrix equation and the tun-
ing parameter permits to regulate the gain of the linear
part of the controller in order to overcome the effect
of uncertainties.

In the second section we formulate the problem with
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some preliminaries. Section 3 is mainly devoted to the
main result of this paper and finally, an example of
uncertain missile autopilot is shown to illustrate the
control strategy. We note
IR is the set of real numbers.
‖·‖ denotes the habitual Euclidean norm.
A′ is the matrix transpose of A.
λmin (A) is the smallest eigenvalue of the matrix A.
λmax (A) is the largest eigenvalue of the matrix A.
If A is a matrix, then |A| = |ai,j |, 1 ≤ i, j ≤ n.
A > B i.e., the matrix A−B is positive definite.
The measure of a matrix A is denoted by µ(A) =

lim
θ→0

(‖I + θA‖ − 1)
θ

. Depending upon the induced

norm, several types of measures are given. We note

µ1(A) = max
j

Re(ai,i) +
∑
i, i6=j

|ai,j |

,

µ2(A) = max
i

(λi(A+A′)/2),

µ∞(A) = max
i

Re(ai,i) +
∑
j, j 6=i

|ai,j |

.

Problem setup
The uncertain system is assumed to satisfy the fol-

lowing assumptions.

Assumption 1 The system is expressed as

ẋ = (A+ E(t))x+B (u+ ξ(t)) , (1)

where x ∈ IRn is the vector of the state variables,
A ∈ IRn×n and B ∈ IRn×m are the nominal matri-
ces forming a controllable pair. u ∈ IRm is the control
input and ξ(t) stands for an external disturbance vec-
tor having the length of u.

Assumption 2 The uncertainty matrix E(t) ∈ IRn×n

is supposed to be an arbitrary non measurable matrix
but bounded as follows:

E(t) ∈ Ω for all t ≥ 0, (2)

and

|E(t)| ≤ εW, (3)

where Ω is a compact set and 0 ∈ Ω. ε is a small
positive parameter and W ∈ IRn×n is a real matrix
with positive parameters.

Assumption 3 For all t ≥ 0, the disturbance ξ(t) is
bounded as

‖ξ(t)‖ ≤ ρ. (4)

The problem is to steer the states of system (1) to
the origin by designing a feedback controller u that
defeats the effects of both the unmodeled dynamics

and the external perturbation ξ(t). The design of the
stabilizing controller is achieved under the assumption
that a full state measurement is possible. For general
systems, this assumption is not valid, but in control of
aerospace systems, the reliable and adequate sensors
do not miss in such situations. The quadratic stability
of uncertain systems subject to unmodeled dynamics
is given by the following definition.4

Definition 1 The system (1) is said to be quadrat-
ically stabilizable if there exists a continuous v(·) :
IRn 7→ IRm, with v(0) = 0 an n × n positive defi-
nite matrix H and a constant β > 0 such that for
any admissible uncertainty E(t) ∈ IF ⊂ IRn×n, for the
Lyapunov function V (x) = x′Hx, the derivative V̇ ,
corresponding to the closed loop-system with the feed-
back law u = v(x(t)), satisfies the inequality

V̇ = x′
[
(A+ E(t))′H +H (A+ E(t))

]
x

+2x′H B v(·) ≤ −β‖x‖2 (5)

for all pairs (x, t).

Before giving the main result of this paper we would
rather present the following theorems that we shall
need later.

Theorem 1 (See2) Let A and B ∈ Cn×n, and µ be
defined as in the notation section. Then

a) µ(I) = 1, µ(−I) = −1, µ(0) = 0;

b) −µ(−A) ≤ Re (λi(A)) ≤ µ(A);

c) µ(cA) = c µ(A), ∀c ∈ IR;

d) µ(A+B) ≤ µ(A) + µ(B).

The proof of the next theorem is given in the refer-
ence.1

Theorem 2 For any piecewise-continuous matrices
W (t) and Y (t) ∈ IRn×n, and |W (t)| ≤ Y (t), the ma-
trix measures of the matrices W (t), |W (t)| and Y (t)
are well defined and have the property:

µ (W (t)) ≤ µ (|W (t)|) ≤ µ (Y (t)) . (6)

Main result
In this section we develop the nonlinear controller

that stabilizes system (1) under the effects of unmod-
eled dynamics and external perturbations. The linear
part of the controller is a high-gain linear controller
that tries to overcome the unmodeled dynamics of sys-
tem (1), while the nonlinear term is designed to kill
the external perturbation. We shall give a necessary
condition to chose the controller gain that permits to
retain the quadratic stability of the uncertain system.
We show that this condition is not restrictive com-
pared with others stability conditions. The design of
the stabilizing controller is given in the following the-
orem.
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Theorem 3 If the parameter γ is selected so as to the
following conditions hold

i) the matrix −A′ − γ
2 I is Hurwitz and

ii) γ satisfies

γ + λmin

(
H−

1
2BB′H−

1
2

)
>

εµ
(∣∣∣H 1

2

∣∣∣W ′ ∣∣∣H− 1
2

∣∣∣+
∣∣∣H− 1

2

∣∣∣W ∣∣∣H 1
2

∣∣∣) ,
then system (1) satisfying assumptions 1-3 is quadrat-
ically stabilizable by the controller

u = −B′H−1x− 2ρ2B′H−1x

2ρ ‖B′H−1x‖+ ε? e−β t
, ε?; β ∈ IR+,

(7)
where H is the solution of the Lyapunov-like equation

−γH −HA′ −AH +BB′ = 0. (8)

Proof. Note that H > 0 always exists whenever the
matrix −A′− γ

2 I is Hurwitz. This comes from the fact
that equation (8) can be written as(
−A′ − γ

2
I
)′
H +H

(
−A′ − γ

2
I
)

= −BB′, (9)

which translates the Lyapunov stability of the matrix
−A′− γ

2 I. Let V = x′H−1x be the Lyapunov function
candidate for the closed loop system

ẋ =
(
A−BB′H−1x+ E(t)

)
x

−2ρ2 BB′H−1x

2ρ ‖B′H−1x‖+ ε? e−β t
+Bξ(t),

(10)

then

V̇ = ẋ′H
−1x+ x′H

−1ẋ

= x′
(
A′ −H−1BB′ + E′(t)

)
H−1x

+ x′H−1
(
A−BB′H−1 + E(t)

)
x

− 4x′
ρ2H−1BB′H−1x

2ρ ‖B′H−1x‖+ ε? e−β t
+ 2x′H−1Bξ(t)

= x′
(
A′H−1 +H−1A− 2H−1BB′H−1

+E′(t)H−1 +H−1E(t)
)
x

− 4x′
ρ2H−1BB′H−1x

2ρ ‖B′H−1x‖+ ε? e−β t
+ 2x′H−1Bξ(t).

(11)

Multiplying both sides of equation (8) by H−1, then
the matrix H−1 verifies the following matrix equation

−γH−1 −A′H−1 −H−1A+H−1BB′H−1 = 0. (12)

substituting (12) in the last equation of (11), we have

V̇ = x′
(
−γH−1 −H−1BB′H−1+

+E′(t)H−1 +H−1E(t)
)
x

− 4x′
ρ2H−1BB′H−1x

2ρ ‖B′H−1x‖+ ε? e−β t
+ 2x′H−1Bξ(t).

(13)

Define ‖x‖2H−1 = x′H−1x, this gives

V̇ ≤ −γ‖x‖2H−1 − λmin

(
H−

1
2BB′H−

1
2

)
‖x‖2H−1

+ λmax

(
H

1
2
(
E′(t)H−1 +H−1E(t)

)
H

1
2

)
‖x‖2H−1

− 4x′
ρ2H−1BB′H−1x

2ρ ‖B′H−1x‖+ ε? e−β t
+ 2x′H−1Bξ(t).

(14)

Consequently,

V̇ ≤ −γ‖x‖2H−1 − λmin

(
H−

1
2BB′H−

1
2

)
‖x‖2H−1

+ λmax

(
H

1
2E′(t)H−

1
2 +H−

1
2E(t)H

1
2

)
‖x‖2H−1

− 4x′
ρ2H−1BB′H−1x

2ρ ‖B′H−1x‖+ ε? e−β t
+ 2

∥∥x′H−1B
∥∥ ‖ξ(t)‖ .

(15)

Using assumption 3, we write

V̇ ≤ −γ‖x‖2H−1 − λmin

(
H−

1
2BB′H−

1
2

)
‖x‖2H−1

+ λmax

(
H

1
2E′(t)H−

1
2 +H−

1
2E(t)H

1
2

)
‖x‖2H−1

+ 2ρ
∥∥x′H−1B

∥∥− 4ρ2
∥∥x′H−1B

∥∥2

2ρ ‖B′H−1x‖+ ε? e−β t

(16)

Finally,

V̇ ≤ −γ‖x‖2H−1 − λmin

(
H−

1
2BB′H−

1
2

)
‖x‖2H−1

+ λmax

(
H

1
2E′(t)H−

1
2 +H−

1
2E(t)H

1
2

)
‖x‖2H−1 + ε?e−β t

(17)

Since the matrix
(
H

1
2E′(t)H−

1
2 +H−

1
2E(t)H

1
2

)
is

a symmetric matrix, then all its eigenvalues are
reals. Using result of theorem 1, then we
can replace λmax

(
H

1
2E′(t)H−

1
2 +H−

1
2E(t)H

1
2

)
by

µ
(
H

1
2E′(t)H−

1
2 +H−

1
2E(t)H

1
2

)
. Using result of

theorem 2, we obtain

µ
(
H

1
2E′(t)H−

1
2 +H−

1
2E(t)H

1
2

)
≤ µ

(∣∣∣H 1
2E′(t)H−

1
2 +H−

1
2E(t)H

1
2

∣∣∣)
≤ µ

(∣∣∣H 1
2

∣∣∣ |E′(t)| ∣∣∣H− 1
2

∣∣∣+
∣∣∣H− 1

2

∣∣∣ |E(t)|
∣∣∣H 1

2

∣∣∣)
≤ εµ

(∣∣∣H 1
2

∣∣∣W ′ ∣∣∣H− 1
2

∣∣∣+
∣∣∣H− 1

2

∣∣∣W ∣∣∣H 1
2

∣∣∣)
(18)

Finally, we conclude that if the parameter γ is chosen
to satisfy

γ + λmin

(
H−

1
2BB′H

1
2

)
>

εµ
(∣∣∣H 1

2

∣∣∣W ′ ∣∣∣H− 1
2

∣∣∣+
∣∣∣H− 1

2

∣∣∣W ∣∣∣H 1
2

∣∣∣) , (19)

then ‖x‖ converges asymptotically to zero.
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Remark 1 The fact that W (resp. W ′) is left mul-
tiplied by

∣∣∣H− 1
2

∣∣∣(resp.
∣∣∣H 1

2

∣∣∣) and right multiplied by∣∣∣H 1
2

∣∣∣(resp.
∣∣∣H− 1

2

∣∣∣), increases the chance to obtain

µ
(∣∣∣H 1

2

∣∣∣W ′ ∣∣∣H− 1
2

∣∣∣+
∣∣∣H− 1

2

∣∣∣W ∣∣∣H 1
2

∣∣∣) < γ.

Application to missile autopilot model
Here, we consider the state space model of a missile

autopilot described as q̇
α̇
η̇

 =

 a1,1(Mc, h) a1,2(Mc, h) a1,3(Mc, h)
1 a2,2(Mc, h) a2,3(Mc, h)
0 0 −30


︸ ︷︷ ︸

A+E(t) q
α
η

+

 0
0
30

 (u+ ξ(t)),

where a1,1(Mc, h), a1,2(Mc, h), a1,3(Mc, h),
a2,2(Mc, h), a2,3(Mc, h) are the uncertain ele-
ments that depend upon the altitude h and the Mach
number Mc. The elements of the state vector are: the
pitch rate q, the angle of attack α, and the elevator
deflection angle η. We suppose that ξ(t) is a bounded
disturbance that affects the controller u. Within
an altitude of 10000 m and Mc ≥ 2, the nominal
matrices of the missile dynamics are3

A =


−1.364 −92.82 −128

1 −4.68 −0.087

0 0 −30

 , B =


0

0

30

 , (20)

E(t) =

 1.0310 sin(t) 0.42 cos(t) 5.32 sin(t)
0 0.4 sin(2 t) 0.370 cos(t)
0 0 0

 . (21)

Note that we could bound the uncertain matrix |E(t)|
by 1.12 I. i.e., ε = 1.12 and W = I. For γ = 100, we
obtain

H =


104.7558841 −1.854941671 41.14908488

−1.854941671 0.03977807201 −0.5999936448

41.14908488 −0.5999936448 22.50000000

 > 0. (22)

The set of the eigenvalues of H is{
.4315607889 10−2, 5.453752292, 121.8375943

}
.

We have

H−1 =


0.1865720776 5.944690050 −0.1826886227

5.944690050 231.4688281 −4.699499094

−0.1826886227 −4.699499094 0.2532355577

 , (23)

and

H
1
2 =

 9.7595 −0.1865 3.0779
−0.1865 0.0703 −0.0071
3.0779 −0.0071 3.6092

 . (24)

Since

µ2

(∣∣∣H 1
2

∣∣∣W ′ ∣∣∣H− 1
2

∣∣∣+
∣∣∣H 1

2

∣∣∣W ∣∣∣H− 1
2

∣∣∣) = 51.8313

< γ = 100.

then the condition of stability is verified and the
asymptotic convergence of the states is guaranteed.

Conclusion
A simple controller with a new non restrictive con-

dition of quadratic stability has been developed. The
controller is designed to overcome both uncertain dy-
namics, due to model imprecision, and external per-
turbation coming resisting to the system actuators.
The controller is basically designed to be independent
from the types or the forms of uncertainties. This
property enlarges the field of application of the devel-
oped controller and makes the user free from the usual
matching conditions, generally encountered in such sit-
uations. Computation of the controller gain is fulfilled
by the resolution of a parameter-dependent Lyapunov-
like equation and the controller gain is based upon
the knowledge of the upper bounds of uncertainties.
The controller design algorithm is quite simple and
the computational requirements is drastically reduced
to a simple matrix computation.
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